Ecosystem Monitoring on Leaves of Leaf Rust Disease of Maize (Zea mays L.)

Sopialena Sopialena, Suyadi Suyadi, Septri Alfian Noor


Endemic leaf rust disease always occurs in almost all maize plantations in Indonesia. Furthermore, the development of this disease differs concurrently and is greatly influenced by the ecological conditions of maize cultivation. Therefore, this study fills the epidemiological gap of diseases that has not been conducted against the epidemiology of maize rust. This identifies the causes of leaf rust that attacked the maize plants in two locations, namely Bayur and Muang Dalam, Lempake, Samarinda, Indonesia. This study also analyzed the relationship or model between ecological factors of temperature, humidity, and soil fertility on the intensity of leaf rust and the infection rate of maize leaf rust. Measurement of disease intensity, the rate at which it developed, soil fertility and temperature and humidity of the area are conducted in this study. Meanwhile, soil fertility also influenced disease progression and the nutrient-poor soils in two sites cause leaf rust disease to develop well. The identification results showed that the cause of maize leaf rust was Puccinia sorghi Schw. Therefore, the temperature accompanied by the increased humidity is directly proportional to the development of the leaf rust.


maize leaf disease identification; plant disease epidemiology; Puccinia sorghi Schw; relative humidity; temperature

Full Text:



Adegbite, A. A. (2011). Reaction of some maize (Zea mays L.) varieties to infestation with root-knot nematode, Meloidogyne incognita under field conditions. African Journal of Plant Science, 5(3), 162–167. Retrieved from

Agrios, G. (2005). Plant pathology 5th edition. San Diego: Academic Press.

BPS-Statistics of Kalimantan Timur Province. (2016). Statistik padi & palawija Provinsi Kalimantan Timur 2015. Retrieved from

Burhanuddin. (2015). Preferensi penyakit karat daun (Puccinia polysora Undrew) pada tanaman jagung. Proceeding Seminar Nasional Serealia, 395–405. Retrieved from

de Nazareno, N. R. X., & Maddesn, L. V. (1992). Survival of cercospora zeae-maydis in corn residue in Ohio. Plant Disease, 76(6), 560–563.

Dey, U., Harlapur, S. I., Dhutraj, D. N., Suryawanshi, A. P., & Bhattacharjee, R. (2015). Integrated disease management strategy of common rust of maize incited by Puccinia sorghi Schw. African Journal of Microbiology Research, 9(20), 1345–1351.

Dhami, N. B., Kim, S. K., Paudel, A., Shrestha, J., & Rijal, T. R. (2015). A review on threat of gray leaf spot disease of maize in Asia. Journal of Maize Research and Development, 1(1), 71–85.

Dubey, M., Verma, V. K., Barpete, R. D., & Verma, N. (2019). Effect of biofertilizers on growth of different crops: A review. Plant Archives, 19(Supplement 1), 1083-1086. Retrieved from

Frac, M., Hannula, S. E., Belka, M., & Jȩdryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 707.

Gliessman, S. R. (1995). 3 Sustainable agriculture: An agroecological perspective. Advances in Plant Pathology, 11, 45–57.

Graef, H., Kiobia, D., Saidia, P., Kahimba, F., Graef, F., & Eichler-Löbermann, B. (2018). Combined effects of biochar and fertilizer application on maize production in dependence on the cultivation method in a sub-humid climate. Communications in Soil Science and Plant Analysis, 2905–2917.

Jeffers, J. N. R. (1965). Plant diseases: Epidemics and control by J. E. Van Der Plank. The Statistician, 15(1), 90–91.

Kinyua, Z. M., Smith, J. J., Kibata, G. N., Simons, S. A., & Langat, B. C. (2011). Status of grey leaf spot disease in Kenyan maize production ecosystems. African Crop Science Journal, 18(4), 183–194.

Kusyanto, K., & Hasmara, P. A. (2017). Pemanfaatan abu sekam padi menjadi katalis heterogen dalam pembuatan biodiesel dari minyak sawit. Journal of Tropical Pharmacy and Chemistry, 4(1), 14–21.

Médiène, S., Valantin-Morison, M., Sarthou, J. P., De Tourdonnet, S., Gosme, M., Bertrand, M., Roger-Estrade, J., Aubertot, J. N., Rusch, A., Motisi, N., Pelosi, C., & Doré, T. (2011). Agroecosystem management and biotic interactions: A review. Agronomy for Sustainable Development, 31, 491–514.

Menkir, A., Kling, J. G., Badu-Apraku, B., & Ibikunle, O. (2006). Registration of 26 tropical maize germplasm lines with resistance to striga hermonthica. Crop Science, 46(2), 1007–1009.

Negeri, A., Wang, G. F., Benavente, L., Kibiti, C. M., Chaikam, V., Johal, G., & Balint-Kurti, P. (2013). Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene. BMC Plant Biology, 13, 106.

Oliveira, A. S., Dos Reis, E. F., Nogueira, A. P. O., Cardoso, D. B. O., & Juliatti, F. C. (2020). Genetic and phenotypical correlations, path analysis and genetic gain in two populations of corn with resistance to leaf spot, rust, and blight disease. Genetics and Molecular Research, 19(2), 1–14.

Thorson, P. R., & Martinson, C. A. (1993). Development and survival of cercospora zeae-maydis germlings in different relative-humidity environments. Phytopathology, 83(2), 153–157. Retrieved from

Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), 16.

Pap, P., Ranković, B., & Maširević, S. (2013). Effect of temperature, relative humidity and light on conidial germination of oak powdery mildew (Microsphaera alphitoides Griff. et Maubl.) under controlled conditions. Archives of Biological Sciences, 65(3), 1069–1077.

Perfecto, I., & Vandermeer, J. (2015). Structural constraints on novel ecosystems in agriculture: The rapid emergence of stereotypic modules. Perspectives in Plant Ecology, Evolution and Systematics, 17(6), 522–530.

Ponisio, L. C., & Ehrlich, P. R. (2016). Diversification, yield and a new agricultural revolution: problems and prospects. Sustainability, 8(11), 1118.

Puspawati, N. M., & Sudarma, I. M. (2016). Epidemiologi penyakit karat pada tanaman jagung (Zea mays L.) di Denpasar Selatan. Agrotrop: Journal on Agriculture Science, 6(2), 117–127. Retrieved from

Rahayu, S., Lee, S. S., Shukor, N. A. A., & Saleh, G. (2018). Environmental factors related to gall rust disease development on Falcataria moluccana (Miq.) Barneby & J. W. Grimes at Brumas Estate, Tawau, Sabah, Malaysia. Applied Ecology and Environmental Research, 16(6), 7485–7499.

Rahayu, S., Widiyatno, & Adriyanti, D. T. (2020). Pathogenesis of gall-rust disease on Falcataria moluccana in areas affected by Mount Merapi eruption in Indonesia. Biodiversitas Journal of Biological Diversity, 21(4), 1310–1315.

Robertson, G. P., Gross, K. L., Hamilton, S. K., Landis, D. A., Schmidt, T. M., Snapp, S. S., & Swinton, S. M. (2014). Farming for ecosystem services: An ecological approach to production agriculture. BioScience, 64(5), 404–415.

Rochi, L., Diéguez, M. J., Burguener, G., Darino, M. A., Pergolesi, M. F., Ingala, L. R., Cuyeu, A. R., Turjanski, A., Kreff, E. D., & Sacco, F. (2018). Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust. Fungal Genetics and Biology, 112, 31–39.

Rosfiansyah, & Sopialena. (2018). Microbial diversity on sedimentated rice fields due to coal mining activities in Tenggarong Seberang subdistrict of Kutai Kartanegara. IOP Conference Series: Earth and Environmental Science, 144, 012028.

RPK. (1972). Review of illustrated genera of imperfect fungi, by H. L. Barnett & B. B. Hunter. Mycologia, 64(4), 930–932.

Soenartiningsih, Fatmawati, & Adnan, A. M. (2013). Identifikasi penyakit utama pada tanaman sorgum dan jagung di Sulawesi Tengah. Proceeding Seminar Nasional Sereala. Retrieved from

Sopialena. (2018). Pengendalian hayati dengan memberdayakan potensi mikroba. Samarinda: Universitas Mulwarman Press. Retrieved from

Sopialena, & Palupi, P. J. (2017). Study of climatic factors on the population dynamics of Pyricularia oryzaeon some varieties of paddy rice (Oryza sativa). Biodiversitas, 18(2), 701–708.

Subedi, S. (2015). A review on important maize diseases and their management in Nepal. Journal of Maize Research and Development, 1(1), 28–52.

Sucher, J., Boni, R., Yang, P., Rogowsky, P., Büchner, H., Kastner, C., Kumlehn, J., Krattinger, S. G., & Keller, B. (2017). The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnology Journal, 15(4), 489–496.

Suriani, Djaenuddin, N., & Talanca, A. H. (2019). Correlation of stomata density to rust severity on some accessions of maize germplasm. Jurnal Hama dan Penyakit Tumbuhan Tropika, 18(2), 95–104.

Surtikanti. (2011). Hama dan penyakit penting tanaman jagung dan pengendaliannya. Proceeding Seminar Nasional Serealia, 497–508. Retrieved from

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Natur, 418, 671–677.

Wakman, W., & Burhanuddin. (2010). Pengelolaan penyakit prapanen jagung. Jagung: Teknik produksi dan pengembangan. Badan Penelitian dan Pengembangan Pertanian. Pusat Penelitian dan Pengembangan Tanaman Pangan. p. 305–335. Retrieved from

Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Developmen, 34, 1–20.


  • There are currently no refbacks.