Carbon Organic Content under Organic and Conventional Paddy Field and its Effect on Biological Activities (A Case Study in Pati Regency, Indonesia)

Supriyadi Supriyadi, Melja Karni Pratiwi, Slamet Minardi, Nanda Lintang Prastiyaningsih


The low organic matter content of paddy soils impacts the declining quality of land. Without the efforts to enrich the soil organic matter (SOM) content, the productivity of paddy fields will decrease or the need for inorganic fertilizers will increase to reach the level of yield. The present research aims to determine the effect of differences in organic and conventional paddy fields management practices on soil organic carbon (SOC) content and biological activities. The research was conducted from July to September 2018 on organic and conventional paddy fields in Dukuhseti Sub-district, Pati Regency, Central Java, Indonesia. Sampling points were taken from six organic samples in the organic paddy fields while the other six samples were taken from conventional paddy fields. The variables observed in this research were organic C, pH, total N soil, total bacterial colonies, soil respiration and microbial biomass C. The results show that the organic C content in the organic paddy field (2.4%) was higher than that of the conventional paddy field (1.8%). The C content of organic paddy fields increased by 0.6%. The differences of the total bacterial colonies, soil respiration and microbial biomass C between organic paddy fields and conventional paddy fields were 11.5 CFU g-1, 7.42 mg CO2 week-1 and 0.51 µg g-1, respectively, because the use of organic farming systems could improve the biological nature of soils and caused biological activity in organic paddy fields to have the highest value compared to conventional paddy fields.


biological activities; conventional; organic; paddy fields; soil organic carbon

Full Text:



Afandi, F. N., Siswanto, B., & Nuraini, Y. (2015). Pengaruh Pemberian Berbagai Jenis Bahan Organik terhadap Sifat Kimia Tanah pada Pertumbuhan dan Produksi Tanaman Ubi Jalar di Entisol Ngrangkah Pawon, Kediri. Jurnal Tanah dan Sumberdaya Lahan, 2(2), 237-244. Retrieved from Link

Arunrat, N., Pumijumnong, N., & Hatano, R. (2017). Practices Sustaining Soil Organic Matter and Rice Yield in a Tropical Monsoon Region. Soil Science and Plant Nutrition, 63(3), 274-287. Crossref

Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A. K., Gupta, H. S., & Mitra, S. (2010). Long Term Effects of Fertilization on Carbon and Nitrogen Sequestration and Aggregate Associated Carbon and Nitrogen in the Indian sub-Himalayas. Nutrient Cycling in Agroecosystems, 86(1), 1-16. Crossref

Chen, D. D., Zhang, S. H., Dong, S. K., Wang, X. T., & Du, G. Z. (2010). Effect of Land-Use on Soil Nutrients and Microbial Biomass of an Alpine Region on the Northeastern Tibetan Plateau, China. Land Degradation & Development, 21(5), 446-452. Crossref

da Silva, A. P., Babujia, L. C., Franchini, J. C., Ralisch, R., Hungria, M., & Guimarães, M. de F. (2014). Soil Structure and its Influence on Microbial Biomass in Different Soil and Crop Management Systems. Soil and Tillage Research, 142, 42-53. Crossref

Fageria, N. K., dos Santos, A. B., & Coelho, A. M. (2011). Growth, Yield and Yield Components of Lowland Rice as Influenced by Ammonium Sulfate and Urea Fertilization. Journal of Plant Nutrition, 34(3), 371-386. Crossref

Fang, X., Wang, Q., Zhou, W., Zhao, W., Wei, Y., Niu, L., & Dai, L. (2014). Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China. Chinese Geographical Science, 24, 297-306. Crossref

Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P., & Sainju, U. M. (2017). Tillage, Crop Residue, and Nutrient Management Effects on Soil Organic Carbon in Rice-Based Cropping Systems: a review. Journal of Integrative Agriculture, 16(1), 1-15. Crossref

Guillaume, T., Maranguit, D., Murtilaksono, K., & Kuzyakov, Y. (2016). Sensitivity and Resistance of Soil Fertility Indicators to Land-Use Changes: New Concept and Examples from Conversion of Indonesian Rainforest to Plantations. Ecological Indicators, 67, 49-57. Crossref

Hedo de Santiago, J., Lucas-Borja, M. E., Wic-Baena, C., Andrés-Abellán, M., & de las Heras, J. (2016). Effects of Thinning and Induced Drought on Microbiological Soil Properties and Plant Species Diversity at Dry and Semiarid Locations: Thinning and Induced Drought in Mediterranean Soils. Land Degradation & Development, 27(4), 1151-1162. Crossref

Jauhiainen, J., Hooijer, A., & Page, S. E. (2012). Carbon Dioxide Emissions from an Acacia Plantation on Peatland in Sumatra, Indonesia. Biogeosciences, 9(2), 617-630. Crossref

Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304(5677), 1623-1627. Crossref

Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36(1), S33-S39. Crossref

Liu, C. H., Liu, Y., Fan, C., & Kuang, S. Z. (2013). The Effects of Composted Pineapple Residue Return on Soil Properties and the Growth and Yield of Pineapple. Journal of Soil Science and Plant Nutrition, 13(2), 433-444. Crossref

Liu, X., Wang, H., Zhou, J., Hu, F., Zhu, D., Chen, Z., & Liu, Y. (2016). Effect of N Fertilization Pattern on Rice Yield, N Use Efficiency and Fertilizer–N Fate in the Yangtze River Basin, China. PLoS ONE, 11(11), e0166002. Crossref

Lu, F., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H., & Miao, H. (2009). Soil Carbon Sequestrations by Nitrogen Fertilizer Application, Straw Return and No-Tillage in China’s Cropland. Global Change Biology, 15(2), 281-305. Crossref

McCauley, A., Jones, C., & Olson-Rutz, K. (2017). Soil pH and Organic Matter, Nutrient Management Module No. 8. Bozeman: Montana State University.

Nachimuthu, V. V., Muthurajan, R., Duraialaguraja, S., Sivakami, R., Pandian, B. A., Ponniah, G., Gunasekaran, K., Swaminathan, M., K K, S., & Sabariappan, R. (2015). Analysis of Population Structure and Genetic Diversity in Rice Germplasm Using SSR Markers: an Initiative Towards Association Mapping of Agronomic Traits in Oryza sativa. Rice, 8(1), 30. Crossref

Nendel, C., Melzer, D., & Thorburn, P. J. (2019). The Nitrogen Nutrition Potential of Arable Soils. Scientific Reports, 9(1), 5851. Crossref

Nguyen, M. T. (2006). The effect of temperature on the growth of the bacteria. Saint Martin's University Biology Journal, 1, 87-94. Retrieved from Link

Pospíšilová, L., Formanek, P., Kucerik, J., Liptaj, T., Losak, T., & Martensson, A. (2011). Land Use Effects on Carbon Quality and Soil Biological Properties in Eutric Cambisol. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 61(7), 661-669. Crossref

Prasetyo, B. H. (2008). Karakteristik Tanah Sawah dari Endapan Aluvial dan Pengelolaannya. Jurnal Sumberdaya Lahan, 2(1), 1-14. Retrieved from Link

Santos, V. B., Araújo, A. S. F., Leite, L. F. C., Nunes, L. A. P. L., & Melo, W. J. (2012). Soil Microbial Biomass and Organic Matter Fractions During Transition from Conventional to Organic Farming Systems. Geoderma, 170, 227-231. Crossref

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1-26. Crossref

Soil Research Institute. 2009. Chemical Analysis of Soil, Plants, Water and Fertilizers. Bogor: Institute for Soil Research.

Supriyadi, S. (2008). Kandungan Bahan Organik sebagai Dasar Pengelolaan Tanah di Lahan Kering Madura. EMBRYO, 5(2), 176-183. Retrieved from Link

Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., & Richards, A. (2019). Continental-Scale Soil Carbon Composition and Vulnerability Modulated by Regional Environmental Controls. Nature Geoscience, 12(7), 547-552. Crossref

Wang, W., Lai, D. Y. F., Wang, C., Pan, T., & Zeng, C. (2015). Effects of Rice Straw Incorporation on Active Soil Organic Carbon Pools in a Subtropical Paddy Field. Soil and Tillage Research, 152, 8-16. Crossref

Yan, T., Song, H., Wang, Z., Teramoto, M., Wang, J., Liang, N., Ma, C., Sun, Z., Xi, Y., Li, L., & Peng, S. (2019). Temperature Sensitivity of Soil Respiration Across Multiple Time Scales in a Temperate Plantation Forest. Science of the Total Environment, 688, 479-485. Crossref

Zhang, X., Sun, N., Wu, L., Xu, M., Bingham, I. J., & Li, Z. (2016). Effects of Enhancing Soil Organic Carbon Sequestration in the Topsoil by Fertilization on Crop Productivity and Stability: Evidence from Long-Term Experiments with Wheat-Maize Cropping Systems in China. Science of The Total Environment, 562, 247-259. Crossref

Zhao, Y.-N., He, X.-H., Huang, X.-C., Zhang, Y.-Q., & Shi, X.-J. (2016). Increasing Soil Organic Matter Enhances Inherent Soil Productivity while Offsetting Fertilization Effect under a Rice Cropping System. Sustainability, 8(9), 879. Crossref

Zhichen, Y., Hong, L., & Jinshun, B. (2015). Effects on Soil Organic Carbon and Microbial Biomass Carbon of Different Tillage. Proceedings of the 2015 AASRI International Conference on Circuits and Systems. 2015 AASRI International Conference on Circuits and Systems (CAS 2015), Paris, France. Crossref


  • There are currently no refbacks.