The Effect of Potassium Addition on Oil Palm (Elaeis guineensis Jacq.) Roots Anatomic Properties under Drought Stress

Wiski Irawan, Eka Tarwaca Susila Putra


The availability of water is one of the main limiting factors for oil palm growth and production. Potassium (K) is an essential nutrient for plants because of its role in controlling metabolic and physiological activities. This study aimed to examine the effect of different K fertilizer doses on root anatomic properties under drought stress. The experiment was arranged in factorial Randomized Complete Block Design (RCBD) with two factors. The first factor was drought stress, consisting of three levels of fractions of transpirable soil water (FTSW) (FTSW 1 (control: field capacity); FTSW 0.35 (moderate drought); FTSW 0.15 (severe drought)) and the second factor was K dose (sourced from KCl), consisting of five levels (K0: 0%; K1: 50%; K2: 100%; K3: 150%; K4: 200%). The results showed that there was an interaction between the addition of K doses and the tolerance level of oil palm plants to drought stress. The addition of 100% K gave higher results in the parameters of xylem diameter, phloem diameter and cortex cell width compared to the plants without K. The results disclosed that 200% K application on moderate drought stress and severe drought stress in oil palm seedlings could widen xylem diameter, phloem diameters, strengthen cell such as epidermal cells, cortex cells, thickness of endodermic cells, thickness of sclerenchyma cells and increase hardness of cell compared to field capacity. As for the parameters of thick endodermic cells, stele diameter and sclerenchyma diameter, an addition of 50% K could give higher results.


drought stress; oil palm; potassium; roots anatomy

Full Text:



Anjum, S. A., Xie, X., Wang, L., Saleem, M. F., Man, C., & Lei. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. Retrieved from Link

Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. Crossref

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research, 5(July). Crossref

Cochard, B., Adon, B., Rekima, S., Billotte, N., De Chenon, R. D., Koutou, A., … Noyer, J. L. (2009). Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genetics and Genomes, 5(3), 493–504. Crossref

Cochrane, T. T., & Cochrane, T. A. (2009). The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant Signaling and Behavior, 4(3), 240–243. Crossref

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(November), 1–16. Crossref

Darlan, N., Pradiko, I., & Siregar, H. (2016). Dampak El Nino 2015 terhadap Performa Tanaman Kelapa Sawit di Bagian Selatan Sumatera (Effect of El Nino 2015 on Oil Palm Performance in Southeastern Part of Sumatera). Jurnal Tanah Dan Iklim, 40(2), 113–120. Crossref

De Schepper, V., De Swaef, T., Bauweraerts, I., & Steppe, K. (2013). Phloem transport: A review of mechanisms and controls. Journal of Experimental Botany, 64(16), 4839–4850. Crossref

Fageria, N. K., Barbosa Filho, M. P., & Da Costa, J. G. C. (2014). Potassium-use efficiency in common bean genotypes. Journal of Plant Nutrition, 24(12), 1937–1945. Crossref

Fairhurst, T., & McLaughlin, D. (2009). Sustainable oil palm development on degraded land in Kalimantan. World Wildlife Fund, 1–9. Retrieved from Link

Farhad, Islam, M. N., & Hoque, S. (2010). Role of Potassium and Sulphur on the Growth, Yield and Oil Content of Soybean (Glycine max L.). An Academic Journal of Plant Science, 3(28), 99–103. Retrieved from Link

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra , S. M. A. (2009). Plant drought stress : effects, mechanisms and management To cite this version : Review article. Agronomy for Sustainable Developmen, 29(1), 185–212. Crossref

Goh, K. J., Wong, C. K., & Ng, P. H. C. (2016). Oil Palm. Encyclopedia of Applied Plant Sciences, 3(c), 382–390. Crossref

Gusmalawati, D. (2017). Struktur Anatomi Akar , Batang dan Daun Gaharu (Aquilaria malaccensis Lamk.) yang Mengalami Cekaman Kekeringan. Protobiont, 6(2), 38–44. Retrieved from Link

Jourdan, C., Michaux-Ferrière, N., & Perbal, G. (2000). Root system architecture and gravitropism in the oil palm. Annals of Botany, 85(6), 861–868. Crossref

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., … Xu, J. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. Crossref

Laurance, W. F. (2007). Forest destruction in tropical Asia. Current Science, 93(11), 1544–1550. Retrieved from Link

Lipiec, J., Doussan, C., Nosalewicz, A., & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics, 27(4), 463–477. Crossref

Makbul, S., Saruhan Güler, N., Durmuş, N., & Güven, S. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, 35(4), 369–377. Crossref

Mangena, P. (2018). Water Stress: Morphological and Anatomical Changes in Soybean (Glycine max L.) Plants. In book: Plant, Abiotic Stress and Responses to Climate Change. Crossref

Melo, E. F., Fernandes-Brum, C. N., Pereira, F. J., de Castro, E. M., & Chalfun-Júnior, A. (2014). Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions. Ciência e Agrotecnologia, 38(1), 25–33. Crossref

Ninilouw, J. P., & Linda, R. (2015). Struktur Anatomi Akar , Batang dan Daun Jabon Putih (Anthocephalus cadamba (Roxb.) Miq) yang Mengalami Cekaman Kekeringan dan Genangan. Protobiont, 4(2), 113–120. Retrieved from Link

Palupi, R. E., & Dedywiryanto, Y. (2008). Kajian Karakter Ketahanan terhadap Cekaman Kekeringan pada Beberapa Genotipe Bibit Kelapa Sawit (Elaeis guineensis Jacq.). Jurnal Agronomi Indonesia, 36(1), 24–32. Retrieved from Link

Peña-Valdivia, C. B., Sánchez-Urdaneta, A. B., Rangel, J. M., Muñoz, J. J., García-Nava, R., & Velázquez, R. C. (2010). Anatomical root variations in response to water deficit: Wild and domesticated common bean (Phaseolus vulgaris L.). Biological Research, 43(4), 417–427. Crossref

Prihastanti. (2010). Perubahan Struktur Pembuluh Xilem Akar Kakao (Theobroma cacao L.) dan Gliricidia sepium pada Cekaman Kekeringan. Bioma - Berkala Ilmiah Biologi, 12(1), 24–28. Crossref

Prince, S. J., Murphy, M., Mutava, R. N., Durnell, L. A., Valliyodan, B., Grover Shannon, J., & Nguyen, H. T. (2017). Root xylem plasticity to improve water use and yield in water-stressed soybean. Journal of Experimental Botany, 68(8), 2027–2036. Crossref

Purushothaman, R., Zaman-Allah, M., Mallikarjuna, N., Pannirselvam, R., Krishnamurthy, L., & Gowda, C. L. L. (2012). Root Anatomical Traits and Their Possible Contribution to Drought Tolerance in Grain Legumes. Plant Production Science, 16(1), 1–8. Crossref

Qaderi, M., Martel, A., & Dixon, S. (2019). Environmental Factors Influence Plant Vascular System and Water Regulation. Plants, 8(3), 65. Crossref

Ramadhana, D. D., Donantho, D., & Paranoan, R. R. (2019). Penilaian Status Kesuburan Tanah pada Lahan Pascatambang di Areal PT . Trubaindo Coal Mining Kabupaten Kutai Barat. Jurnal Agroekoteknologi Tropika Lembab, 2(1), 24–28. Retrieved from Link

Ratmadanti, F. R., & Maryani, M. M. (2017). Root Anatomy and Growth of Capsicum frutescens L. on Verticulture with Different Watering Supply. Journal of Tropical Biodiversity and Biotechnology, 2(1), 1–9. Crossref

Ray, J. D., & Sinclair, T. R. (1998). The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. Journal of Experimental Botany, 49(325), 1381–1386. Crossref

Robbins, N. E., Trontin, C., Duan, L., & Dinneny, J. R. (2014). Beyond the Barrier: Communication in the Root through the Endodermis. Plant Physiology, 166(2), 551–559. Crossref

Rosawanti, P., Ghulamahdi, M., Khumaida, N., Agroteknologi, J., Pertanian, F., Muhammadiyah, U., … Tengah, K. (2015). Respon Anatomi dan Fisiologi Akar Kedelai terhadap Cekaman Kekeringan Anatomical and Physiological Responses of Soybean Root to Drought Stress. Jurnal Agronomi Indonesia, 43(3), 186–192. Retrieved from Link

Samuels, L., & McFarlane, H. E. (2012). Plant cell wall secretion and lipid traffic at membrane contact sites of the cell cortex. Protoplasma, 249(SUPPL. 1), 19–23. Crossref

Singh, S. K., & Reddy, V. R. (2017). Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO2 Levels. Frontiers in Plant Science, 8(June), 1–16. Crossref

Stibig, H. J., Achard, F., Carboni, S., Raši, R., & Miettinen, J. (2014). Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences, 11(2), 247–258. Crossref

Twumasi, P., Van Ieperen, W., Woltering, E. J., Emons, A. M. C., Schel, J. H. N., Snel, J. F. H., … Van Marwijk, D. (2005). Effects of water stress during growth on xylem anatomy, xylem functioning and vase life in three Zinnia elegans cultivars. Acta Horticulturae, 669(1998), 303–312. Crossref


  • There are currently no refbacks.