The Correlation and Regression Analysis of The Growth and Physiological Parameters: How Paclobutrazol Increases Bulb Yield on Three Cultivars of True Shallot Seed

Prahesti Elizani, Endang Sulistyaningsih

Abstract

True Shallot Seed (TSS) is a planting material for shallots in the forms of seeds. It shows a visual appearance of the fresh green shoot even though in the harvest season. This condition indicates that TSS still has potential assimilates which should be optimized for bulbs formation. Paclobutrazol is increasing assimilate translocation from source to sink by activating the sucrose transporter enzyme and changing the phytohormones balance. The study aimed to find out how paclobutrazol increased bulb yield on TSS by analyzing the closeness in the relationship between and the influence of physiological property variables and growth analysis. The study was conducted at Gadjah Mada University experimental field, Yogyakarta, from September to November 2017. It was arranged in a Randomized Complete Block Design with three replications. The first factor included the paclobutrazol concentration (0, 15, 30 and 45 mg L-1), while the second one included TSS cultivars (Tuk Tuk, Sanren and Lokananta). Correlation and regression were used in the data analysis. The results revealed that paclobutrazol significantly affected the physiological properties and the growth of TSS, instead of cultivars. Regression analysis showed that the effect of the concentration of the applied paclobutrazol formed quadratic pattern, where most observed variables had a positive correlation with shallot productivity. Paclobutrazol increased bulb yield by maintaining shoot biomass duration (SBD) and chlorophyll content which had a positive and linear effect on plant growth rate (PGR). The PGR might increase bulb yield per planting hole and indirectly increase its productivity. Paclobutrazol application at 15-30 mg L-1 could be used to improve bulb yield in TSS.

Keywords

growth retardant; productivity; shallots

Full Text:

PDF

References

Antonio, J., Moraes, P. J., Tinoco, S. de A., Barbosa, J. G., Finger, F.L., & Cecon, P. R. (2005). Effects of paclobutrazol on growth and fruiting characteristics of “Pitanga” ornamental pepper. Acta Horticultura, 683, 333–336. Crossref

Assuero, S. G., Lorenzo, M., Ramirez, N. M. P., Velazquez, L. M., & Tognetti, J. A. (2012). Tillering promotion by paclobutrazol in wheat and its relationship with plant carbohydrate status. New Zealand Journal of Agricultural Research, 55(4), 347–358. Crossref

Banon, S., Alberto, G., Emilio, A. C., Jose, A. F., & Juan A. F. (2002). Growth, development and color response of potted Dianthus caryophyllusto paclobutrazol treatment. Scientia Horticulturae, 94, 371–377. Crossref

Barłóg, P. & Grzebisz, W. (2004). Effect of timing and nitrogen fertilizer application on Winter Oilseed Rape (Brassica napus L.). I. Nitrogen Uptake Dynamics and Fertilizer Efficiency. Journal of Agronomy and Crop Science, 190, 305–313. Crossref

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soils, 39, 205–207. Crossref

BPS. (2018). Statistik Indonesia (Statistical yearbook of Indonesia) 2018. 1st ed. Edited by Subdirektorat Publikasi dan Kompilasi Statistik. Jakarta: Badan Pusat Statistik/BPS-Statistics Indonesia. Online: Link

Dewi, K., & Darussalam. (2018). Effect of paclobutrazol and cytokinin on growth and source-sink relationship during grain filling of black rice (Oryza sativa L. “Cempo Ireng’’). Indian Journal of Plant Physiology, Springer India. Crossref

Diepenbrock, W. (2000). Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research, 67, 35–49. Crossref

Fageria, N. K., Baligar, V. C., & Clark, R. B. (2005). Physiology of crop production. Haworth : Food Product Press. Retrieved from Link

Fletcher, R. A., & Gilley, A. (2000). Triazoles as plant growth regulators and stress protectants. Horticultural Reviews, 24, 55–138. Crossref

Ghosh, A., Chikara, J., Chaudhary, D. R., Prakash, A., Boricha, G., & Zala, A. (2010). Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. Journal of Plant Growth Regulation, 29, 307–315. Crossref

Gomathinayagam, M., Jaleel C. A., Lakshmanan G. M. A., & Panneerselvam, R. (2007). Changes in carbohydrate metabolism by triazole growth regulators in cassava (Manihot esculenta Crantz); effects on tuber production and quality. Comptes Rendus Biologies, 330, 644–655. Crossref

Gomes, M., Castro, P. A., Mignone, C., & Bertero, H. D. (2011). Can yield potential be increased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using Paclobutrazol. Functional plant biology, 38, 420–430. Retrieved from Link

Gomez, K. A., & Gomez, A. A. (1995). Prosedur statistik untuk penelitian pertanian. The Second Edition. Jakarta: Universitas Indonesia Press.

Gopi, R., Jaleel, C. A., Sairam, R., Lakshmanan, G.M.A., Gomathinayagam, M., & Panneerselvam, R. (2007). Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Clolloids and surfaces B. Biointerfaces. 60, 180–186. Crossref

Huang, W. D., Shen, T., Han, Z. H., & Liu, S. (1995). Influence of paclobutrazol on photosynthesis rate and dry matter partitioning in the apple tree. Journal of Plant Nutrition, 18, 901–910. Crossref

Hunter, D. M., & Proctor, J. K. A. (1992). Paclobutrazol affects growth and fruit composition of potted grapevines. Horticultural Science, 27, 319–321. Retrieved from Link

Ibrahim, M., Nuraini, A., & Widayat, D. (2015). Pengaruh sitokinin dan paklobutrazol terhadap pertumbuhan dan hasil benih kentang (Solanum tuberosum L.) G2 kultivar granola dengan sistem nutrient film technique. Jurnal Kultivase, 14(2), 36–41. Retrieved from Link

Kementerian Pertanian RI (The Ministry of Agriculture of the Republic of Indonesia). (2006). Deskripsi bawang merah varietas Tuk Tuk. Retrieved from Link

Kementerian Pertanian RI (The Ministry of Agriculture of the Republic of Indonesia). (2013). Deskripsi bawang merah varietas Sanren. Retrieved from Link

Kementerian Pertanian RI (The Ministry of Agriculture of the Republic of Indonesia). (2017). Lampiran surat keputusan menteri pertanian Republik Indonesia. Retrieved from Link

Kishore, K., Singh, H. S., & Kurian, R. M. (2015). Paclobutrazol use in perennial fruit crops and its residual effects: A review. Indian Journal of Agricultural Sciences, 85(7), 863–872. Retrieved from Link

Kuai, J., Liu, Z., Wang, Y. H., Meng, Y. L., Chen, B. L., Zhao, W. Q., Zhou, Z. G., & Oosterhuis, D. M. (2014).Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Science, Elsevier Ireland Ltd. 223, 79–98. Crossref

Kuai, J., Yang, Y., Sun, Y., Zhou, G. S., Zuo, Q. S., Wu, J. S., & Ling, X. (2015). Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Research, 180, 10–20. Crossref

Lee, S., & Huang, W. (2013). Cytokinin, auxin, and abscisic acid affect sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. Botanical Studies, 54(1). Crossref

Lolaei, A., Mobasheri, S., Bemana, R., & Teymori, N. (2013). Role of paclobutrazol on vegetative and sexual growth of plants. Journal of Agriculture and Crop Sciences, 5, 985–996. Retrieved from Link

Mabvongwe, O., Manenji, B. T., Gwazane, M., & Chandiposha, M. (2016). The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). Advances in Agriculture, 2016, 1-5. Crossref

Nafees, M., Faqeer, M., Ahmad, S., Khan, M. A., Jamil, M., & Aslam, M. N. (2010). Paclobutrazol soil drenching suppresses vegetative growth, reduces malformation, and increases production in mango. International Journal of Fruit Science, 10(4), 431–440. Crossref

Ni’mah, F., Ratnasari, E., & Budipramana, L. S. (2012). Pengaruh pemberian berbagai kombinasi konsentrasi sukrosa dan kinetin terhadap induksi umbi mikro kentang (Solanum Tuberosum L.) kultivar granola kembang secara in-vitro. Jurnal Lentera Biologi, 1, 41–48. Retrieved from Link

Nie, L., Liu, H. X. & Chen, L. G. (2001). Effects of uniconazole on growth, photosynthesis, and yield of longan. Acta Horticultura, 558, 289–292. Crossref

Nouriyani, H., Majidi, E., Seyyednejad, S. M., Siadat, S. A., & Naderi, A. (2012). Effect of paclobutrazol under different levels of nitrogen on some physiological traits of two wheat cultivars (Triticum aestivum L.). World Applied Sciences Journal, 16(1), 1–6. Retrieved from Link

Pal, S., Zhao, J., Khan, A., Yadav, N. S., Batushansky, A., Barak, S., Rewald, B., Fait, A., Lazarovitch, N., & Rachmilevitch, S. (2016). Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology, and metabolism. Scientific reports, Nature Publishing Group, 6(39321), 1–13. Crossref

Pangestuti, R. & Sulistyaningsih, E. (2011). Potensi Penggunaan True Seed Shallot (TSS) Sebagai Sumber Benih di Indonesia. In Prosiding Seminaloka Nasional “Dukungan Agro-Inovasi untuk Pemberdayaan Petani". Semarang, 258–266. Retrieved from Link

Panyapruek, S., Sinsiri, W., Sinsiri, N., Arimatsu, P., & Polthanee, A. (2016). Effect of paclobutrazol growth regulator on tuber production and starch quality of cassava (Manihot esculenta Crantz). Asian Journal of Plant Sciences, 15(1), 1–7. Crossref

Pardjo, Y.V., Sulandjari & Sunu, P. (2012). Efektivitas jenis polinator dan asupan hara terhadap hasil biji dan umbi bawang merah (Alium cepa L). Caraka Tani : Journal of sustainable agriculture, 27(2), 174-181. Crossref

Ruiz-Robleto, J., & Villar, R. (2005). Relative growth rate and biomass allocation in ten woody species with different leaf longevity using Phylogenetic Independent Contrasts (PICs). Plant Biology. 7, 484–494. Crossref

Sareer, O., Bernstein, N., Ahmad, S., & Umar, S. (2016). Genetic, developmental and temporal variability in nitrate accumulation and nitrate reductase activity in medicinal herb Andrographis paniculata. Pedosphere: An International Journal, 26(6), 839–847. Crossref

Sarkar, S., Michel, R., Perras, S., Duane, E., Ruichuan, Z., & Richard, P. (2004). Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings. Plant Growth, 42, 125–135. Crossref

SAS Institute Inc. (2018). SAS 9.4 OLAP Server : User’s Guide. Fifth Edition. Cary, NC, USA: SAS Institute Inc.

Senoo, S., & Isoda, A. (2003). Effects of paclobutrazol on dry matter distribution and yield in peanut. Plant Production Science, 1(6), 90–94. Crossref

Setia, R. C., Bhathal, G., & Setia, N. (1995). Influence of paclobutrazol on growth and yield of Brassica carinata A. Br. Plant Growth Regulation, 16, 121–127. Crossref

Sharma, R. K., Agrawal, M., & Agrawal, S. B. (2007). Interactive effects of cadmium and zinc on carrots: growth and biomass accumulation. Journal of Plant Nutrition, 31, 19–34. Crossref

Silva, C. M. M., Vieira, R. F., & Nicolella, G. (2003). Paclobutrazol effects on soil microorganisms. Applied Soil Ecology, 22(1), 79–86. Crossref

Silva, M. D. A., Jifon, J. L., Santos, C. M., Jadoski, C. J., & Silva, J.A.G.(2013). Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Brazilian Archives of Biology and Technology, 56(5), 735–748. Crossref

Singh, V. K., Garg, N., & Bhriguvanshi, S. R. (2005). Effect of paclobutrazol doses on nutritional and microbiological properties of mango (Mangifera indica) orchard soils. Indian Journal of Agricultural Sciences, 75(11), 738–739. Retrieved from Link

Song, C., Zhu, G., Jiao, X., & Zhou, G. (2018). Effects of paclobutrazol on dry matter accumulation and grain filling of castor bean. American Journal of Biological and Environmental Statistics, 4(3), 83–90. Crossref

Souza, M. A., Mesquita, A. C., Simoes, W. L., Ferreira, K. M., & Araujo, E. F. J. (2016). Physiological and biochemical characterization of mango tree with paclobutrazol application via irrigation. Pesquisa Agropecuária Tropical, 46, 442–449. Crossref

Still, J. R., & Pill, W. G. (2004). Growth and stress tolerance of tomato seedlings (Lycopersicon esculentum Mill) in response to seed treatment with paclobutrazol. The Journal of Horticultural Science and Biotechnology, 79(2), 197–203. Crossref

Tsegaw, T. (2005). Response of Potato to Paclobutrazol and Manipulation of Reproductive Growth (Doctoral Thesis). Horticultural Science Department of Plant Production and Soil Science. The University of Pretoria. Retrieved from Link

Tsegaw, T., & Hammes, P. S. (2004). Response of potato grown under non-inductive condition to paclobutrazol : shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality, and dormancy. Plant Growth Regulation, 43, 227–236. Crossref

Tsegaw, T., & Hammes, P. S. (2005). Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regulation, 45, 37–46. Crossref

Tsegaw, T., Hammes, S., & Robbertse, J. (2005). Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. HortScience, 40(5), 1343–1346. Crossref

Vu, J. C. V., & Yelenosky, G. (1992). Growth and photosynthesis of sweet orange plants treated with paclobutrazol. Journal of Plant Growth Regulation, 11, 85–89. Crossref

Wang, G., Que, F., Xu, Z., Wang, F., & Xiong, A. (2015). Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biology, 15(290), 1–12. Crossref

Widodo, W. D., Poerwanto, R., Sumarni, N., & Sopha, G. A. (2011). Teknologi True Shallot Seed (TSS) sebagai bahan tanam untuk meningkatkan produktivitas bawang merah. In Prosiding Hasil-Hasil Penelitian IPB 2011. Retrieved from Link

Wu, Y., Sun, M. Y., Zhang, J., Zhang, L., Ren, Z., Min, R., Wang, X., & Xia, Y. (2018). Differential effects of paclobutrazol on the bulblet growth of oriental lily cultured in vitro: growth behavior, carbohydrate metabolism, and antioxidant capacity. Journal of Plant Growth Regulation, 1–14. Crossref

Xu, G., Luo, R., & Yao, Y. (2013). Paclobutrazol improved the reproductive growth and the quality of seed oil of Jatropha curcas. Journal of Plant Growth Regulation, 32(4), 875–883. Crossref

Yadav, R. K., Rai, N., Yadav, D. S., & Asati, B. S. (2005). Use of paclobutrazol in horticultural crops: A review. Agricultural Reviews, 26(2), 124–132. Retrieved from Link

Zheng, R., Wu, Y., & Xia, Y. (2012). Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids “Sorbonne”. Journal of Zhejiang University SCIENCE B, 13(2), 136–144. Crossref

Refbacks

  • There are currently no refbacks.