The Effect of Calcium on Photosynthetic Rate due to ABA and Proline Behaviour of Oil Palm (Elaeis guineensis Jacq.) Seedlings under Drought Conditions
Abstract
Planting drought-resistance plants in terms of agronomy, such as induction of plant tolerance using calcium is assumed to be able to solve the climate anomaly problem. Calcium is known as an element that plays an essential role in determining the response of plant resistance to drought through biochemical activity. This study aimed to determine the role of calcium in changing photosynthesis activity in order to increase the resistance to drought stress. The treatment was arranged in factorial of 3 x 4 in a split plot Randomized Complete Block Design replicated three times. The first factor was the dose of calcium application consisted of 0 (control/without calcium), 0.04, 0.08 and 0.12 g. The second factor was the intensity of drought stress, which referred to the Fraction of Transpirable Soil Water method consisted of 1 (control/field capacity), 0.35 (moderate drought) and 0.15 (severe drought). The measurement data of stomatal aperture, Abscisic Acid (ABA) content, chlorophyll content, carotenoid content, proline content, nitrate reductase activity and photosynthesis rate that fulfill the assumption of homogeneity and normality were analyzed using variance at 95% accuracy and continued using DMRT. Moreover, regression analysis were determined of relationship between the treatment and parameters. The results revealed that drought resulted in a decline in leaf water potential and stomatal aperture. The effects of calcium on chlorophyll and carotenoid under drought stress could not be explained in this study. However, the application of calcium has a significant effect on decreased ABA, increased proline and nitrate reductase activity resulting in an increase in the photosynthetic rate of oil palm seeds in drought stress.
Keywords
Full Text:
PDFReferences
Ai, N. S., & Banyo, Y. (2011). Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman. J. Ilmiah Sain, 11(2), 166–173. Crossref
Asano, T., Hayashi, N., Kobayashi, M., Aoki, N., Miyao, A., Mitsuhara, I., Ichikawa, H., Komatsu, S., Hirochika, J., Kikuchi, S., & Ohsugi, R. (2012). A Rice Calcium-Dependent Protein Kinase Oscpk12 Oppositely Modulates Salt-Stress Tolerance and Blast Disease Resistance. Plant Journal, 69(1), 26–36. Crossref
Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under Stressful Environments: An Overview. Photosynthetica, 51(2), 163–190. Crossref
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Short Communication : Rapid Determination of Free Proline For Water-Stress Studies. Plant and Soil, 39, 205–207. online Retrieved from Link
Benesova, M., Hola, D., Fische, L., Jedelsky, P. L., Hnilicka, F., Wilhelmova, N., Rothova, O., Kocova, M., Prochazkova, D., Honnerova, J., Fridrichova, L., & Hnilickova, H. (2012). The Physiology and Proteomics of Drought Tolerance in Maize : Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration. Plosone, 7(6), 1-16. Crossref
Bivi, M. S. H. R., Paiko, A. S., Khairulmazmi, A., Akhtar, M. S., & Idris, A. S. (2016). Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid. Plant Pathology Journal, 32(5), 396–406. Crossref
Brandt, B., Munemasa, S., Wang, C., Nguyen, D., Yong, T., Yang, P. G., Poretsky, E., Belknap, T. F., Waadt, R., Aleman, F., & Schroeder, J. I. (2015). Calcium Specificity Signaling Mechanisms in Abscisic Acid Signal Transduction in Arabidopsis Guard Cells. e Life, 1–25. Crossref
Carr, M. K. V. (2011). A Review : The Water Relations and Irrigation Requirements of Oil Palm (Elaeis guineensis). Experimental Agriculture, 47(4), 629–652. Crossref
Carvalho, M. H. C. D. (2008). Drought Stress and Reactive Oxygen Species. Plant Signaling & Behavior, 3(3), 156–165. Retrieved from Link
Cha-um, S., Yamada, N. Takabe, T., & Kirdmanee, C. (2013). Physiological Features and Growth Characters of Oil Palm (Elaeis guineensis jacq.) in Response to Reduced Water-Deficit and Rewatering. Australian Journal of Crop Science, 7(3), 432–439. Retrieved from Link
Cha-um, S., Takabe, T., & Kirdmanee, C. (2010). Osmotic Potential, Photosynthetic Abilities and Growth Characters of Oil Palm (Elaeis guineensis Jacq.) Seedlings in Responses to Polyethylene Glycol-Induced Water Deficit. African Journal of biotechnology, 9(39), 6509–6516. Crossref
Chakraborty, U., & Pradhan, B. (2012). Drought Stress-Induced Oxidative Stress and Antioxidative Responses in Four Wheat (Triticum aestivum L.) Varieties. Archives of Agronomy and Soil Science, 58(6), 617–630. Crossref
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis Under Drought and Salt Stress : Regulation Mechanisms From Whole Plant to Cell. Annals of Botany, 103, 551-561. Crossref
Darlan, N. H., Pradiko, I., Winarna, & Siregar, H. H. (2016). Dampak El Nino 2015 terhadap Performa Tanaman Kelapa Sawit di Bagian Selatan Sumatera (Effect of El Nino 2015 on Oil Palm Performance in Southeastern Part of Sumatera). Jurnal Tanah dan Iklim (Indonesian Soil and Climate Journal), 40(2), 113–120. Retrieved from Link
Dewi, A. Y., Putra, E. T. S., & Trisnowati, S. (2014). Induksi Ketahanan Kekeringan Delapan Hibrida Kelapa Sawit (Elaeis guineensis) dengan Silika. Vegetalika, 3(3), 1–13. Retrieved from Link
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8, 1–16. Crossref
Fathi, A., & Tari, D. B. (2016). Effect of Drought Stress and its Mechanism in Plants. International Journal of Life Sciences, 10(1), 1-6. Crossref
Hartiko, H. (1987). Laporan Penelitian : Optimasi Metode Pengukuran Kegiatan Nitrat Reduktase In-Vivo Daun Berbagai Species Tanaman Produksi. Yogyakarta: Fakultas Biologi UGM. 1–34. Retrieved from Link
Hilu, K. W., & Randall, J. L. (1984). Convenient Method for Studying Grass Leaf Epidermis. Taxon, 33(3), 413–415. Retrieved from Link
Hopper, D. W., Ghan, R., & Cramer, G. R. (2014). A Rapid Dehydration Leaf Assay Reveals Stomatal Response Differences in Grapevine Genotypes. Horticulture Research, 1(2), 1–8. Crossref
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., & Pannerselvam, R. (2009). Drought Stress in Plants : A Review on Morphological Characteristics and Pigments Composition. Int J Agric, 11, 100–105. Crossref
Jazayeri, S. M., Rivera, Y. D., Camperos-Reyes, J. E., & Romero, H. M. (2015). Physiological Effects of Water Deficit on Two Oil Palm (Elaeis guineensis Jacq.) Genotypes. Agronomía Colombiana, 33(2), 164–173. Crossref
Knight, H., Brandt, S., & Knight, M. R. (1998). A history of stress alters drought calcium signalling pathways in Arabidopsis. The Plant Journal, 16(6), 681–687. Crossref
Li, M., Wang, G., & Lin, J. (2003). Application of External Calcium in Improving The PEG-Induced Water Stress Tolerance in Liquorice Cells. Bull. Acad. Sin, 44, 275–284. Retrieved from Link
Liang, W., Wang, M., & Ai, X. (2009). The Role of Calcium in Regulating Photosynthesis and Related Physiological Indexes of Cucumber Seedlings Under Low Light Intensity and Suboptimal Temperature Stress. Scientia Horticulturae, 123(1), 34–38. Crossref
Liang, X., Zhang, L., Natarajan, S.K., & Becker, D. F. (2013). Proline Mechanisms of Stress Survival. Antioxidants & Redox Signaling, 19(9), 998–1011. Crossref
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids : Measurement and Characterization by UV-VIS. Current Protocols in Food Anlytical Chemistry, 1–8. Retrieved from Link
Lokhande, V. H., & Suprasanna, P. (2012). Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance. Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change, 1–54. Crossref
Naeem, M. Naeem, M. S., Ahmad, R., & Ahmad, R. (2017). Foliar-Applied Calcium Induces Drought Stress Tolerance in Maize by Manipulating Osmolyte Accumulation and Antioxidative Responses. Pakistan Journal of Botany, 49(2), 427–434. Retrieved from Link
Nakashima, K., & Yamaguchi, S. K. (2013). ABA Signaling in Stress-Response and Seed Development. Plant Cell Rep, 32, 959–970. Crossref
Parry, M. A. J., Flexas, J., & Medrano, H. (2005). Prospects for Crop Production Under Drought: Research Priorities and Future Directions. Annals of Applied Biology, 147(3), 211–226. Crossref
Pego, J. V., Kortstee, A. J., Huijser, C., & Smeekens, S. C. M. (2000). Photosynthesis, Sugars and the Regulation of Gene Expression. Journal of Experimental Botany, 51, 407–416. Crossref
Putra, E. T. S., Issukindarsyah, Taryono, & Purwanto, B. H. (2015). Physiological Responses of Oil Palm Seedlings to the Drought Stress Using Boron and Silicon Applications. Journal of Agronomy, 1–13. Crossref
Putra, E. T. S., Issukindarsyah, Taryono, Purwanto, B.H., & Indradewa, D. (2016). Role of Boron and Silicon in Inducing Mechanical Resistance of Oil Palm Seedlings to Drought Stress. Journal of Applied Sciences, 16(6), 242–251. Crossref
Ray, J. D., & Sinclair, T. R. (1998). The Effect of Pot Size on Growth and Transpiration af Maize and Soybean During Water Deficit Stress. Journal of Experimental Botany, 49(325), 1381–1386. Crossref
Reddy, A. S. N. 2001. Review Calcium: Silver Bullet in Signaling. Plant Science, 160, 381–404. Crossref
Rosario, A., & Tobar, R. M. (1998). Activity of Nitrate Reductase and Glutamine Synthetase in Shoot and Root of Mycorrhizal Allium Cepa Effect of Drought Stress. Plant Science, 133, 1–8. Retrieved from Link
Sepehr, M. F., Ghorbanli, M., & Amini, F. (2012). The Effect of Water Stress on Nitrate Reductase Activity and Nitrogen and Phosphorus Contents in Cuminum Cyminum L. Pak. J. Bot, 44(3), 899–903. Retrieved from Link
Shao, H. B., Chu, L., Jaleel, C. A., & Zhao, C. (2008). Water-Deficit Stress-Induced Anatomical Changes in Higher Plants. Comptes Rendus - Biologies, 331, 215–225. Crossref
Sharma, S. S., & Dietz, K. (2006). The Significance of Amino Acids and Amino Acid-Derived Molecules in Plant Responses and Adaptation to Heavy Metal Stress. Journal of Experimental Botany, 57(4), 711–726. Crossref
Shekari, F.,Soltaniband, V., Javanmard, A., & Abbasi, A. (2015). The Impact of Drought Stress at Different Stages of Development on Water Relations, Stomatal Density and Quality Changes of Rapeseed (Brassica napus L.). Iran Agricultural Reasearc, 34(2), 81–90. Crossref
Silva, P. A., Oliveira, I. V., Rodrigues, K. C. B., Cosme, V. S., Bastos, A. J. R., Detmann, K. S. C., Cunha, R. L. Festucci-Buselli, R. A. DaMatta, F. M., & Pinheiro, H. A. (2016). Leaf Gas Exchange and Multiple Enzymatic and Non-Enzymatic Antioxidant Strategies Related to Drought Tolerance in Two Oil Palm Hybrids. Trees, 30(1), 203–214. Crossref
Solihatun, F., Putra, E. T. S., & Kastono, D. (2014). Induksi Ketahanan Kekeringan Delapan Hibrida Kelapa Sawit (Elaeis guineensis) dengan Boron. Vegetalika, 3(1), 91–100. Crossref
Song, W. Y. Zhang, Z. B., Shao, H. B., Guo, X. L., Cao, H. X., Zhao, H. B., Fu, Z. Y., & Hu, X. J., (2008). Relationship Between Calcium Decoding Elements and Plant Abiotic-Stress Resistance. International Journal of Biological Sciences, 4(2), 116–125. Crossref
Suguiyama, V. F., Sanches, R. F.E., Meirelles, S. T., Centeno, D. C., da Silva, E. A., & Braga, M. R. (2016). Physiological Responses to Water Deficit and Changes in Leaf Cell Wall Composition as Modulated by Seasonality in the Brazilian Resurrection Plant Barbacenia Purpurea. South African Journal of Botany, 105, 270–278. Crossref
Tan, W., Meng, Q. W., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is Improved by Exogenous Calcium in Heat-stressed Tobacco Plants. Journal of Plant Physiology, 168(17), 2063-2071. Crossref
Wirawan, B. D. S., Putra, E. T. Su., & Yudono, P. (2016). Pengaruh Pemberian Magnesium, Boron dan Silikon terhadap Aktivitas Fisiologis, Kekuatan Struktural Jaringan Buah dan Hasil Pisang (Musa acuminata) “Raja Bulu”. Vegetalika, 5(4), 1–14. Crossref
Zhang, S. Q., & Jr, W. H. O. (2001). Abscisic Acid Introduced Into The Transpiration Stream Accumulates in The Guard-Cell Apoplast and Causes Stomatal Closure. Plant Cell and Environment, 24, 1045–1054. Crossref
Zhu, J. (2017). Abiotic Stress Signaling and Responses In Plants. Cell, 167(2), 313–324. Crossref
Refbacks
- There are currently no refbacks.