Karakterisasi Sifat Ketahanan Terhadap Naungan pada Kedelai dengan Marka RAPD

Titin Handayani


A series of experiment of soybean tolerance to shade were conducted in order to attain the following objectives: genotypes evaluation for shade tolerance, appropriate selection method to screen tolerant genotype to shade characterization of molecular markers of shade tolerance by using RAPD marker.

The morphological specific characters wich is corelated to shade tolerance is the number of productive branchs. The intensity 75% of artificial shading is optimal level for doing selection of soybean genotypes.

Molecular analysis by using RAPD technique showed that UBC 153, ROTH 480.01, and ROTH 480.03 primer have polymorphic band that can be used for linkage analysis. All polymorphisms segregated independently of each ather. The nearest genetic distance was DNA fregment about 125 bp of UBC 153 marker which is linked to tolerance to shade character by about 0.13 centomorgans.


kedelai; Glycine max (L.) Merrill; tolerance; shade; RAPD

Full Text:



Asadi, B., Arsyad, D.M., Zahara, H., dan Darmijati. 1997. Pemuliaan Kedelai untuk Toleran Naungan. Buletin Agrobio 1(2): 15-20.

Blackhall, N.W., Hammatt, N. and Davey, M.R. 1991. Analysis of variation in the DNA content of Glycine species: A flow cytometric study. Soybean genetics newsletter 18: 194-200.

Crowder, L.V. 1993. Genetika Tumbuhan. Terjemahan Lilik K., dan Soetarso. Cetakan ke-4. Gadjah Mada University Press. Yogyakarta. 499 hal.

Elfarisna. 2000. Adaptasi Kedelai terhadap Naungan: Studi Morfologi dan Anatomi. Tesis Magister Sains, Pascasarjana IPB.

Gresshoff, P.M. 1993. Molecular Genetic Analysis of Nodulation Genes in Soybean. Plant Breeding Reviews 11: 275-318.

Gurley, W.B., Hepburn, A.G. and Key, J.L. 1979. Sequence organization of the soybean genome. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 561(1): 167-183.

Keim, P., Diers, B.W., Olson, T.C. and Shoemaker, R.C. 1990. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 126(3): 735-742.

Lorenzen, L.L., Boutin, S., Young, N., Specht, J.E. and Shoemaker, R.C. 1995. Soybean pedigree analysis using map-based molecular markers: I. Tracking RFLP markers in cultivars. Crop Science, 35(5): 1326-1336.

Maroof, M.S., Biyashev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences, 91(12): 5466-5470.

Rafalski, A., Tingey, S. 1993. RFLP map of soybean (Glycine max = 2n = 40). In: O. Brien S.J. (ed) Genetic map: Locus Maps of Complex Genomes Cold Spring harbor Laboratory Press. Cold Spring Harbor N.Y.

Shoemaker, R.C., Lorenzen, L.L., Diers, B.W. and Olson, T.C. 1994. Genome mapping and agriculture. In: Gresshoff, P.MM. (ed) Plant Genome Analysis. Current Topics in Plant Molecular Biology, Vol. 3,chapter 1. CRC Press, Boca Raton, Florida. pp.1-10.

Tingey, S.V., Rafalski, J.A. and Hanafey, M.K. 1992. Genetic analysis with RAPD markers, p. 3-8. In: Application of RAPD Technology to Plant Breeding. Joint Plant Breeding Symposium Series, Minneapolis, Minnesota. 1 Nov. 1992. CSSA. Am.Soc. Horticul. Sci., and Am. Genet. Assoc.

Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic acids research, 18(22): 6531-6535.


  • There are currently no refbacks.