Calcium Silicate Application Enhances Oxidative Defense and Improves the Physiological and Growth Responses of Shallot (Allium cepa L. Aggregatum Group) Under Salinity Stress

Sidiq Permana Putra, Sukirno Sukirno, Laurentius Hartanto Nugroho, Diah Rachmawati

Abstract

Indonesia’s shallot production still falls short of domestic demand, necessitating imports. Expanding cultivation into marginal coastal areas such as Yogyakarta is promising but constrained by soil salinity. Silicon can help by enhancing plant resistance to such abiotic stress. This study evaluated the physiological and biochemical responses of shallot plants (Allium cepa L. Aggregatum group) to the application of calcium silicate (CaSiO3) under saline conditions. The experiment employed a completely randomized design with 2 factors: CaSiO3 (0, 2, and 4 mM) and salinity (0, 2, 4, and 8 dS m⁻¹), each with 5 replications. Physiological parameters, antioxidant activity, and yield traits were analyzed using analysis of variance (ANOVA) followed by Duncan multiple range test (DMRT) at p ≤ 0.05. CaSiO3 significantly alleviated salt stress by enhancing superoxide dismutase (SOD) activity and membrane stability, improving photosynthetic efficiency, promoting growth, and yield components. Under high salinity, 4 mM CaSiO3reduced proline and H₂O₂ accumulation compared with untreated plants. These findings indicate that applying 4 mM CaSiO3 can enhance shallot productivity and resilience in saline coastal soils, supporting sustainable shallot self-sufficiency in Indonesia.

Keywords

Allium cepa; antioxidant enzymes; photosynthesis; salt tolerance; silicon

Full Text:

PDF

References

Abdelaal, K. A. A., Mazrou, Y. S. A., & Hafez, Y. M. (2020). Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants, 9(6), 733. https://doi.org/10.3390/plants9060733

Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. Plant Stress Tolerance: Methods and Protocols, pp. 317–331. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-60761-702-0_20

Ahmed, M. A. (2022). Physiological effects of salt stress on plant growth. Tikrit Journal for Agricultural Sciences, 22(3), 93–97. https://doi.org/10.25130/tjas.22.3.11

Akhoundnejad, Y., Altuntas, O., & Dasgan, H. Y. (2018). Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum L.). HortScience, 53(12), 1820–1826. https://doi.org/10.21273/HORTSCI13411-18

Akhter, M. S., Noreen, S., Ummara, U., Aqeel, M., Saleem, N., Ahmed, M. M., ... & Ahmad, P. (2022). Silicon-induced mitigation of NaCl stress in barley (Hordeum vulgare L.), associated with enhanced enzymatic and non-enzymatic antioxidant activities. Plants, 11(18), 2379. https://doi.org/10.3390/plants11182379

Alharbi, K., Al-Osaimi, A. A., & Alghamdi, B. A. (2022). Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in Pisum sativum (L.): A toxicity assessment. ACS Omega, 7(24), 20819–20832. https://doi.org/10.1021/acsomega.2c01427

Alkhatib, R., Abdo, N., & Mheidat, M. (2021). Photosynthetic and ultrastructural properties of eggplant (Solanum melongena) under salinity stress. Horticulturae, 7(7), 181. https://doi.org/10.3390/horticulturae7070181

Anwar, N. H., Karyawati, A. S., Maghfoer, M. D., & Kurniawan, A. (2024). Organic fertilizer alleviates salt stress in shallot by modulating plant physiological responses. Journal of Ecological Engineering, 25(7), 286–294. https://doi.org/10.12911/22998993/188880

Arulmathi, C., & Porkodi, G. (2020). Characteristics of coastal saline soil and their management: A review. International Journal of Current Microbiology and Applied Sciences, 9(10), 1726–1734. https://doi.org/10.20546/ijcmas.2020.910.209

Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na⁺ and K⁺ transporters in salt stress adaptation in glycophytes Frontiers in Physiology, 8, 275169. https://doi.org/10.3389/fphys.2017.00509

Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246. https://doi.org/10.3390/agronomy9050246

Bakır, M., Uncuoğlu, A. A., Özmen, C. Y., Baydu, F. Y., Kazan, K., Kibar, U., ... & Ergül, A. (2024). Comprehensive expression profiling analysis to investigate salt and drought responding genes in wild barley (Hordeum spontaneum L.). Plant Stress, 11, 100315. https://doi.org/10.1016/j.stress.2023.100315

Compton, M. E. (2012). Use of statistics in plant biotechnology. Plant Cell Culture Protocols, pp. 109–127. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-818-4_9

Coskun, D., Britto, D. T., Huynh, W. Q., & Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 7, 1072. https://doi.org/10.3389/fpls.2016.01072

Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., ... & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry, 162, 110–123. https://doi.org/10.1016/j.plaphy.2021.02.023

Ehtaiwwesh, A. F., & Emsahel, M. J. (2020). Impact of salinity stress on germination and growth of pea (Pisum sativum L.) plants. Al-Mukhtar Journal of Sciences, 35(2), 146–159. https://doi.org/10.54172/mjsc.v35i2.319

El-Sayed, A. A., Abou Seeda, M. A., Yassen, A. A., Sahar, M. Z., & Khater, A. (2019). Silicon in soils, plants and its important role in crop production: A review. Middle East Journal of Agriculture Research, 8(4), 983–1004. https://doi.org/10.36632/mejar/2019.8.4.3

Forlani, G., & Funck, D. (2020). A specific and sensitive enzymatic assay for the quantitation of L-proline. Frontiers in Plant Science, 11, 582026. https://doi.org/10.3389/fpls.2020.582026

Gao, R., Yuan, Z., Zhao, Z., & Gao, X. (1998). Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics, 45(1), 41–45. https://doi.org/10.1016/S0302-4598(98)00072-5

Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29(9), 1637–1647. https://doi.org/10.1080/01904160600851494

Gunadi, N., Harper, S., & Adiyoga, W. (2024). Response of shallots to different rates of nitrogen grown in the lowland tropics of Cirebon Regency, West Java. IOP Conference Series: Earth and Environmental Science, 1386(1), 012041. https://doi.org/10.1088/1755-1315/1386/1/012041

Harborne, J. B. (1998). Phytochemical methods (Third edition). Chapman & Hall. Retrieved from https://www.researchgate.net/profile/Br-Rajeswara-Rao/post/How-do-I-choose-solvents-for-extraction-process-of-plant-extract/attachment/59d622f379197b8077981487/AS%3A304351921278977%401449574560991/download/Phytochemical+methods-Harborne.pdf

Higbie, S. M., Wang, F., Stewart, J. M., Sterling, T. M., Lindemann, W. C., Hughs, E., & Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. International Journal of Agronomy, 2010(1), 643475. https://doi.org/10.1155/2010/643475

Indarwati, L. D., Sulistyaningsih, E., & Kurniasih, B. (2021). Impact of salicylic acid and biosilica application on plant growth of shallot under water deficit. IOP Conference Series: Earth and Environmental Science, 883(1), 012049. https://doi.org/10.1088/1755-1315/883/1/012049

Jang, S. W., Sadiq, N. B., Hamayun, M., Jung, J., Lee, T., Yang, J. S., ... & Kim, H. Y. (2020). Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng C.A.Mey. Industrial Crops and Products, 156, 112848. https://doi.org/10.1016/j.indcrop.2020.112848

Kalteh, M., Taj Alipour, Z., Ashraf, S., Aliabadi, M. M., & Nosratabadi, A. F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4(3), 49–55. Retrieved from https://www.sid.ir/en/VEWSSID/J_pdf/53000620140307.pdf

Kovács, S., Kutasy, E., & Csajbók, J. (2022). The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), 1223. https://doi.org/10.3390/plants11091223

Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 12, 660409. https://doi.org/10.3389/fpls.2021.660409

Lee, M. H., Cho, E. J., Wi, S. G., Bae, H., Kim, J. E., Cho, J. Y., ... & Chung, B. Y. (2013). Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiology and Biochemistry, 70, 325–335. https://doi.org/10.1016/j.plaphy.2013.05.047

Mir, R. A., Bhat, B. A., Yousuf, H., Islam, S. T., Raza, A., Rizvi, M. A., ... & Zargar, S. M. (2022). Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Frontiers in Plant Science, 13, 819658. https://doi.org/10.3389/fpls.2022.819658

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Nabati, J., Kafi, M., Masoumi, A., & Mehrjerdi, M. Z. (2013). Effect of salinity and silicon application on photosynthetic characteristics of sorghum (Sorghum bicolor L.). International Journal of Agricultural Sciences, 3(4), 483–492. Retrieved from https://internationalscholarsjournals.org/articles/5866490926052013

Olas, J. J., Fichtner, F., & Apelt, F. (2020). All roads lead to growth: Imaging-based and biochemical methods to measure plant growth. Journal of Experimental Botany, 71(1), 11–21. https://doi.org/10.1093/jxb/erz406

Parmawati, R., Hardyansah, R., & Rahmawati, A. (2021). Sustainability of corporate based shallot farming business: Evidence from Malang Regency, Indonesia. Journal of Socioeconomics and Development, 4(1), 46–56. https://doi.org/10.31328/jsed.v4i1.1644

Puspitasari, Kiloes, A. M., Prabawati, S., & Setiani, R. (2022). Investigating the entrepreneurial behaviour of farmers to encourage the development of horticultural agribusiness clusters: The case of shallot farmers in Solok Regency, West Sumatera. IOP Conference Series: Earth and Environmental Science, 1063(1), 012038. https://doi.org/10.1088/1755-1315/1063/1/012038

Rahmawati, N., & Yasvi, A. P. (2024). Improvement in physio-biochemical characteristics of shallot plants with nano silica at several levels of drought stress. IOP Conference Series: Earth and Environmental Science, 1302(1), 012032. https://doi.org/10.1088/1755-1315/1302/1/012032

Rasool, S., Hameed, A., Azooz, M. M., Siddiqi, T. O., & Ahmad, P. (2013). Salt stress: Causes, types and responses of plants. Ecophysiology and Responses of Plants Under Salt Stress, pp. 1–24. New York: Springer New York. https://doi.org/10.1007/978-1-4614-4747-4_1

Rastogi, A., Yadav, S., Hussain, S., Kataria, S., Hajihashemi, S., Kumari, P., ... & Brestic, M. (2021). Does silicon really matter for the photosynthetic machinery in plants…?. Plant Physiology and Biochemistry, 169, 40–48. https://doi.org/10.1016/j.plaphy.2021.11.004

Sanwal, S. K., Kesh, H., Kumar, A., Dubey, B. K., Khar, A., Rouphael, Y., & Kumar, P. (2022). Salt tolerance potential in onion: Confirmation through physiological and biochemical traits. Plants, 11(23), 3325. https://doi.org/10.3390/plants11233325

Shen, Z., Cheng, X., Li, X., Deng, X., Dong, X., Wang, S., & Pu, X. (2022). Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biology, 22(1), 390. https://doi.org/10.1186/s12870-022-03783-7

Shinga, M. H., Fawole, O. A., & Pareek, S. (2025). Opuntia ficus-indica mucilage coating prolongs the shelf life of bananas (Musa spp.) by enhancing antioxidant activity and modulating antioxidant enzyme systems. Food Bioscience, 65, 106039. https://doi.org/10.1016/j.fbio.2025.106039

Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S., ... & Sharma, A. (2022). Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants, 11(19), 2525. https://doi.org/10.3390/plants11192525

Souza Junior, J. P. D., de Mello Prado, R., Campos, C. N. S., Junior, G. D. S. S., Costa, M. G., de Pádua Teixeira, S., & Gratão, P. L. (2023). Silicon modulate the non-enzymatic antioxidant defence system and oxidative stress in a similar way as boron in boron-deficient cotton flowers. Plant Physiology and Biochemistry, 197, 107594. https://doi.org/10.1016/j.plaphy.2023.02.024

Sun, X., Tan, Y., Zhang, Y., Guo, W., Li, X., Golub, N., ... & Wang, H. (2025). Effects of salinity stress on morphological structure, physiology, and mRNA expression in different wheat (Triticum aestivum L.) cultivars. Frontiers in Genetics, 16, 1535610. https://doi.org/10.3389/fgene.2025.1535610

Syamsiah, J., Rahayu, & Binafsihi, W. (2020). Soil properties and shallot yield responses to different salinity levels. Sains Tanah, 17(1), 30–34. https://doi.org/10.20961/stjssa.v17i1.41566

Tripathi, P., Subedi, S., Khan, A. L., Chung, Y. S., & Kim, Y. (2021). Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants, 10(5), 885. https://doi.org/10.3390/plants10050885

Trisnaningsih, U., Sidik, J., & Saleh, I. (2023). The response of shallot (Allium ascalonicum) to salinity stress. Jurnal Agrosci, 1(2), 86–93. https://doi.org/10.62885/agrosci.v1i2.111

Trivellini, A., Carmassi, G., Scatena, G., Vernieri, P., & Ferrante, A. (2023). Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. Molecular Horticulture, 3(1), 28. https://doi.org/10.1186/s43897-023-00075-y

Trouvelot, S., Héloir, M. C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., ... & Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays. Frontiers in Plant Science, 5, 592. https://doi.org/10.3389/fpls.2014.00592

Tuhuteru, S., Sulistyaningsih, E., & Wibowo, D. A. (2019). Aplikasi plant growth promoting rhizobacteria dalam meningkatkan produktivitas bawang merah di lahan pasir pantai. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 47(1), 53–60. https://doi.org/10.24831/jai.v47i1.22271

Venâncio, J. B., Dias, N. D. S., Medeiros, J. F. D., Morais, P. L. D. D., Nascimento, C. W. A. D., Sousa Neto, O. N. D., ... & Sá, F. V. D. S. (2022). Effect of salinity and silicon doses on onion post-harvest quality and shelf life. Plants, 11(20), 2788. https://doi.org/10.3390/plants11202788

Wang, M., Wang, R., Mur, L. A. J., Ruan, J., Shen, Q., & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research, 8(1), 254. https://doi.org/10.1038/s41438-021-00681-1

Wang, W., Zhang, C., Shang, M., Lv, H., Liang, B., Li, J., & Zhou, W. (2022). Hydrogen peroxide regulates the biosynthesis of phenolic compounds and antioxidant quality enhancement in lettuce under low nitrogen condition. Food Chemistry: X, 16, 100481. https://doi.org/10.1016/j.fochx.2022.100481

Wangiyana, W., Ngawit, I. K., Farida, N., & Kisman. (2021). Effect of additive intercropping with peanut and organic-silicate-biofertilizer combinations on growth and yield of shallots. IOP Conference Series: Earth and Environmental Science, 759(1), 012030. https://doi.org/10.1088/1755-1315/759/1/012030

Wungrampha, S., Joshi, R., Singla-Pareek, S. L., & Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive?. Photosynthetica, 56(1), 366–381. https://doi.org/10.1007/s11099-017-0763-7

Xue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/ppl.13441

Yeo, A. R., Flowers, S. A., Rao, G., Welfare, K., & Flowers, T. J. (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment, 22(5), 559–565. https://doi.org/10.1046/j.1365-3040.1999.00418.x

Zahra, N., Al Hinai, M. S., Hafeez, M. B., Rehman, A., Wahid, A., Siddique, K. H. M., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178, 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003

Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31–38. https://doi.org/10.1111/plb.12884

Refbacks

  • There are currently no refbacks.