Calcium Silicate Application Enhances Oxidative Defense and Improves the Physiological and Growth Responses of Shallot (Allium cepa L. Aggregatum Group) Under Salinity Stress
Abstract
Keywords
Full Text:
PDFReferences
Abdelaal, K. A. A., Mazrou, Y. S. A., & Hafez, Y. M. (2020). Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants, 9(6), 733. https://doi.org/10.3390/plants9060733
Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. Plant Stress Tolerance: Methods and Protocols, pp. 317–331. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-60761-702-0_20
Ahmed, M. A. (2022). Physiological effects of salt stress on plant growth. Tikrit Journal for Agricultural Sciences, 22(3), 93–97. https://doi.org/10.25130/tjas.22.3.11
Akhoundnejad, Y., Altuntas, O., & Dasgan, H. Y. (2018). Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum L.). HortScience, 53(12), 1820–1826. https://doi.org/10.21273/HORTSCI13411-18
Akhter, M. S., Noreen, S., Ummara, U., Aqeel, M., Saleem, N., Ahmed, M. M., ... & Ahmad, P. (2022). Silicon-induced mitigation of NaCl stress in barley (Hordeum vulgare L.), associated with enhanced enzymatic and non-enzymatic antioxidant activities. Plants, 11(18), 2379. https://doi.org/10.3390/plants11182379
Alharbi, K., Al-Osaimi, A. A., & Alghamdi, B. A. (2022). Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in Pisum sativum (L.): A toxicity assessment. ACS Omega, 7(24), 20819–20832. https://doi.org/10.1021/acsomega.2c01427
Alkhatib, R., Abdo, N., & Mheidat, M. (2021). Photosynthetic and ultrastructural properties of eggplant (Solanum melongena) under salinity stress. Horticulturae, 7(7), 181. https://doi.org/10.3390/horticulturae7070181
Anwar, N. H., Karyawati, A. S., Maghfoer, M. D., & Kurniawan, A. (2024). Organic fertilizer alleviates salt stress in shallot by modulating plant physiological responses. Journal of Ecological Engineering, 25(7), 286–294. https://doi.org/10.12911/22998993/188880
Arulmathi, C., & Porkodi, G. (2020). Characteristics of coastal saline soil and their management: A review. International Journal of Current Microbiology and Applied Sciences, 9(10), 1726–1734. https://doi.org/10.20546/ijcmas.2020.910.209
Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na⁺ and K⁺ transporters in salt stress adaptation in glycophytes Frontiers in Physiology, 8, 275169. https://doi.org/10.3389/fphys.2017.00509
Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246. https://doi.org/10.3390/agronomy9050246
Bakır, M., Uncuoğlu, A. A., Özmen, C. Y., Baydu, F. Y., Kazan, K., Kibar, U., ... & Ergül, A. (2024). Comprehensive expression profiling analysis to investigate salt and drought responding genes in wild barley (Hordeum spontaneum L.). Plant Stress, 11, 100315. https://doi.org/10.1016/j.stress.2023.100315
Compton, M. E. (2012). Use of statistics in plant biotechnology. Plant Cell Culture Protocols, pp. 109–127. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-818-4_9
Coskun, D., Britto, D. T., Huynh, W. Q., & Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 7, 1072. https://doi.org/10.3389/fpls.2016.01072
Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., ... & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry, 162, 110–123. https://doi.org/10.1016/j.plaphy.2021.02.023
Ehtaiwwesh, A. F., & Emsahel, M. J. (2020). Impact of salinity stress on germination and growth of pea (Pisum sativum L.) plants. Al-Mukhtar Journal of Sciences, 35(2), 146–159. https://doi.org/10.54172/mjsc.v35i2.319
El-Sayed, A. A., Abou Seeda, M. A., Yassen, A. A., Sahar, M. Z., & Khater, A. (2019). Silicon in soils, plants and its important role in crop production: A review. Middle East Journal of Agriculture Research, 8(4), 983–1004. https://doi.org/10.36632/mejar/2019.8.4.3
Forlani, G., & Funck, D. (2020). A specific and sensitive enzymatic assay for the quantitation of L-proline. Frontiers in Plant Science, 11, 582026. https://doi.org/10.3389/fpls.2020.582026
Gao, R., Yuan, Z., Zhao, Z., & Gao, X. (1998). Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics, 45(1), 41–45. https://doi.org/10.1016/S0302-4598(98)00072-5
Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29(9), 1637–1647. https://doi.org/10.1080/01904160600851494
Gunadi, N., Harper, S., & Adiyoga, W. (2024). Response of shallots to different rates of nitrogen grown in the lowland tropics of Cirebon Regency, West Java. IOP Conference Series: Earth and Environmental Science, 1386(1), 012041. https://doi.org/10.1088/1755-1315/1386/1/012041
Harborne, J. B. (1998). Phytochemical methods (Third edition). Chapman & Hall. Retrieved from https://www.researchgate.net/profile/Br-Rajeswara-Rao/post/How-do-I-choose-solvents-for-extraction-process-of-plant-extract/attachment/59d622f379197b8077981487/AS%3A304351921278977%401449574560991/download/Phytochemical+methods-Harborne.pdf
Higbie, S. M., Wang, F., Stewart, J. M., Sterling, T. M., Lindemann, W. C., Hughs, E., & Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. International Journal of Agronomy, 2010(1), 643475. https://doi.org/10.1155/2010/643475
Indarwati, L. D., Sulistyaningsih, E., & Kurniasih, B. (2021). Impact of salicylic acid and biosilica application on plant growth of shallot under water deficit. IOP Conference Series: Earth and Environmental Science, 883(1), 012049. https://doi.org/10.1088/1755-1315/883/1/012049
Jang, S. W., Sadiq, N. B., Hamayun, M., Jung, J., Lee, T., Yang, J. S., ... & Kim, H. Y. (2020). Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng C.A.Mey. Industrial Crops and Products, 156, 112848. https://doi.org/10.1016/j.indcrop.2020.112848
Kalteh, M., Taj Alipour, Z., Ashraf, S., Aliabadi, M. M., & Nosratabadi, A. F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4(3), 49–55. Retrieved from https://www.sid.ir/en/VEWSSID/J_pdf/53000620140307.pdf
Kovács, S., Kutasy, E., & Csajbók, J. (2022). The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), 1223. https://doi.org/10.3390/plants11091223
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 12, 660409. https://doi.org/10.3389/fpls.2021.660409
Lee, M. H., Cho, E. J., Wi, S. G., Bae, H., Kim, J. E., Cho, J. Y., ... & Chung, B. Y. (2013). Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiology and Biochemistry, 70, 325–335. https://doi.org/10.1016/j.plaphy.2013.05.047
Mir, R. A., Bhat, B. A., Yousuf, H., Islam, S. T., Raza, A., Rizvi, M. A., ... & Zargar, S. M. (2022). Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Frontiers in Plant Science, 13, 819658. https://doi.org/10.3389/fpls.2022.819658
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
Nabati, J., Kafi, M., Masoumi, A., & Mehrjerdi, M. Z. (2013). Effect of salinity and silicon application on photosynthetic characteristics of sorghum (Sorghum bicolor L.). International Journal of Agricultural Sciences, 3(4), 483–492. Retrieved from https://internationalscholarsjournals.org/articles/5866490926052013
Olas, J. J., Fichtner, F., & Apelt, F. (2020). All roads lead to growth: Imaging-based and biochemical methods to measure plant growth. Journal of Experimental Botany, 71(1), 11–21. https://doi.org/10.1093/jxb/erz406
Parmawati, R., Hardyansah, R., & Rahmawati, A. (2021). Sustainability of corporate based shallot farming business: Evidence from Malang Regency, Indonesia. Journal of Socioeconomics and Development, 4(1), 46–56. https://doi.org/10.31328/jsed.v4i1.1644
Puspitasari, Kiloes, A. M., Prabawati, S., & Setiani, R. (2022). Investigating the entrepreneurial behaviour of farmers to encourage the development of horticultural agribusiness clusters: The case of shallot farmers in Solok Regency, West Sumatera. IOP Conference Series: Earth and Environmental Science, 1063(1), 012038. https://doi.org/10.1088/1755-1315/1063/1/012038
Rahmawati, N., & Yasvi, A. P. (2024). Improvement in physio-biochemical characteristics of shallot plants with nano silica at several levels of drought stress. IOP Conference Series: Earth and Environmental Science, 1302(1), 012032. https://doi.org/10.1088/1755-1315/1302/1/012032
Rasool, S., Hameed, A., Azooz, M. M., Siddiqi, T. O., & Ahmad, P. (2013). Salt stress: Causes, types and responses of plants. Ecophysiology and Responses of Plants Under Salt Stress, pp. 1–24. New York: Springer New York. https://doi.org/10.1007/978-1-4614-4747-4_1
Rastogi, A., Yadav, S., Hussain, S., Kataria, S., Hajihashemi, S., Kumari, P., ... & Brestic, M. (2021). Does silicon really matter for the photosynthetic machinery in plants…?. Plant Physiology and Biochemistry, 169, 40–48. https://doi.org/10.1016/j.plaphy.2021.11.004
Sanwal, S. K., Kesh, H., Kumar, A., Dubey, B. K., Khar, A., Rouphael, Y., & Kumar, P. (2022). Salt tolerance potential in onion: Confirmation through physiological and biochemical traits. Plants, 11(23), 3325. https://doi.org/10.3390/plants11233325
Shen, Z., Cheng, X., Li, X., Deng, X., Dong, X., Wang, S., & Pu, X. (2022). Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biology, 22(1), 390. https://doi.org/10.1186/s12870-022-03783-7
Shinga, M. H., Fawole, O. A., & Pareek, S. (2025). Opuntia ficus-indica mucilage coating prolongs the shelf life of bananas (Musa spp.) by enhancing antioxidant activity and modulating antioxidant enzyme systems. Food Bioscience, 65, 106039. https://doi.org/10.1016/j.fbio.2025.106039
Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S., ... & Sharma, A. (2022). Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants, 11(19), 2525. https://doi.org/10.3390/plants11192525
Souza Junior, J. P. D., de Mello Prado, R., Campos, C. N. S., Junior, G. D. S. S., Costa, M. G., de Pádua Teixeira, S., & Gratão, P. L. (2023). Silicon modulate the non-enzymatic antioxidant defence system and oxidative stress in a similar way as boron in boron-deficient cotton flowers. Plant Physiology and Biochemistry, 197, 107594. https://doi.org/10.1016/j.plaphy.2023.02.024
Sun, X., Tan, Y., Zhang, Y., Guo, W., Li, X., Golub, N., ... & Wang, H. (2025). Effects of salinity stress on morphological structure, physiology, and mRNA expression in different wheat (Triticum aestivum L.) cultivars. Frontiers in Genetics, 16, 1535610. https://doi.org/10.3389/fgene.2025.1535610
Syamsiah, J., Rahayu, & Binafsihi, W. (2020). Soil properties and shallot yield responses to different salinity levels. Sains Tanah, 17(1), 30–34. https://doi.org/10.20961/stjssa.v17i1.41566
Tripathi, P., Subedi, S., Khan, A. L., Chung, Y. S., & Kim, Y. (2021). Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants, 10(5), 885. https://doi.org/10.3390/plants10050885
Trisnaningsih, U., Sidik, J., & Saleh, I. (2023). The response of shallot (Allium ascalonicum) to salinity stress. Jurnal Agrosci, 1(2), 86–93. https://doi.org/10.62885/agrosci.v1i2.111
Trivellini, A., Carmassi, G., Scatena, G., Vernieri, P., & Ferrante, A. (2023). Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. Molecular Horticulture, 3(1), 28. https://doi.org/10.1186/s43897-023-00075-y
Trouvelot, S., Héloir, M. C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., ... & Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays. Frontiers in Plant Science, 5, 592. https://doi.org/10.3389/fpls.2014.00592
Tuhuteru, S., Sulistyaningsih, E., & Wibowo, D. A. (2019). Aplikasi plant growth promoting rhizobacteria dalam meningkatkan produktivitas bawang merah di lahan pasir pantai. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 47(1), 53–60. https://doi.org/10.24831/jai.v47i1.22271
Venâncio, J. B., Dias, N. D. S., Medeiros, J. F. D., Morais, P. L. D. D., Nascimento, C. W. A. D., Sousa Neto, O. N. D., ... & Sá, F. V. D. S. (2022). Effect of salinity and silicon doses on onion post-harvest quality and shelf life. Plants, 11(20), 2788. https://doi.org/10.3390/plants11202788
Wang, M., Wang, R., Mur, L. A. J., Ruan, J., Shen, Q., & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research, 8(1), 254. https://doi.org/10.1038/s41438-021-00681-1
Wang, W., Zhang, C., Shang, M., Lv, H., Liang, B., Li, J., & Zhou, W. (2022). Hydrogen peroxide regulates the biosynthesis of phenolic compounds and antioxidant quality enhancement in lettuce under low nitrogen condition. Food Chemistry: X, 16, 100481. https://doi.org/10.1016/j.fochx.2022.100481
Wangiyana, W., Ngawit, I. K., Farida, N., & Kisman. (2021). Effect of additive intercropping with peanut and organic-silicate-biofertilizer combinations on growth and yield of shallots. IOP Conference Series: Earth and Environmental Science, 759(1), 012030. https://doi.org/10.1088/1755-1315/759/1/012030
Wungrampha, S., Joshi, R., Singla-Pareek, S. L., & Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive?. Photosynthetica, 56(1), 366–381. https://doi.org/10.1007/s11099-017-0763-7
Xue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/ppl.13441
Yeo, A. R., Flowers, S. A., Rao, G., Welfare, K., & Flowers, T. J. (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment, 22(5), 559–565. https://doi.org/10.1046/j.1365-3040.1999.00418.x
Zahra, N., Al Hinai, M. S., Hafeez, M. B., Rehman, A., Wahid, A., Siddique, K. H. M., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178, 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003
Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31–38. https://doi.org/10.1111/plb.12884
Refbacks
- There are currently no refbacks.










