Tomato Mutants SlIAA9 Exhibit Thermo-Morphophysiological Characters and Enhanced SIDREBA4 Gene Expression
Abstract
Keywords
Full Text:
PDFReferences
Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088
Ariizumi, T., Shinozaki, Y., & Ezura, H. (2013). Genes that influence yield in tomato. Breeding Science, 63(1), 3–13. https://doi.org/10.1270/jsbbs.63.3
Cao, X., Li, W., Ren, A., Ji, C., Zhan, X., & Hu, T. (2025). SlIAA9 negatively regulates tomato (Solanum lycopersicum) tolerance to drought stress. Gene, 970, 149788. https://doi.org/10.1016/j.gene.2025.149788
Castro-Estrada, J., Salazar, S. M., Mariotti-Martínez, J. A., Cabello, J. V., Chan, R. L., & Welchen, E. (2025). Mechanical stress induces anatomical changes, tomato early flowering, and increased yield involving ethylene and auxins. Journal of Experimental Botany, 76(21), 6487–6507. https://doi.org/10.1093/jxb/eraf252
Cui, J., Zhao, J., Zhang, H., Li, J., Jiang, L., & Wang, N. (2024). Dynamic changes in tomato (Solanum lycopersicum) RNA m6A modification during seed germination and under microgravity conditions. Horticulturae, 11(3), 282. https://doi.org/10.3390/horticulturae11030282
Deng, M. H., Lv, J. H., Wang, Z. R., Zhu, H. S., Yang, Z. A., Yue, Y. L., & Zhao, K. (2020). Two promoter regions confer heat-induced activation of SlDREBA4 in Solanum lycopersicum. Biochemical and Biophysical Research Communications, 524(3), 689–695. https://doi.org/10.1016/j.bbrc.2020.01.153
Djangsou, H., Francia, E., Ronga, D., & Buti, M. (2019). Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Scientia Horticulturae, 249, 49–58. https://doi.org/10.1016/j.scienta.2019.01.042
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., & Farooq, A. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147. https://doi.org/10.3389/fpls.2017.01147
Farjon, G., Itzhaky, Y., Khoroshevsky, F., & Bar-Hillel, A. (2021). Leaf counting: Fusing network components for improved accuracy. Frontiers in Plant Science, 12, 575751. https://doi.org/10.3389/fpls.2021.575751
Gommers, C. (2020). Keep cool and open up: Temperature-induced stomatal opening. Plant Physiology, 182(3), 1188–1189. https://doi.org/10.1104/pp.20.00158
Graci, S., & Barone, A. (2024). Tomato plant response to heat stress: A focus on candidate genes for yield-related traits. Frontiers in Plant Science, 14, 1245661. https://doi.org/10.3389/fpls.2023.1245661
Jadid, N., Mardika, R. K., Nurhidayati, T., & Irawan, M. I. (2016). Reverse transcription-PCR analysis of geranylgeranyl diphosphate synthase (JcGGPPS) in Jatropha curcas L. and in silico analysis of casbene synthase (JcCS) among Euphorbiaceae. AIP Conference Proceedings, 1744(1), 020042. https://doi.org/10.1063/1.4953516
Jadid, N., Maziyah, R., Nurcahyani, D. D., & Mubarokah, N. R. (2017). Growth and physiological responses of some Capsicum frutescens varieties to copper stress. AIP Conference Proceedings, 1854(1), 020018. https://doi.org/10.1063/1.4985409
Jadid, N., Safitri, C. E., Jannah, A. L., Muslihatin, W., Purwani, K. I., & Mas’ud, F. (2022). Genetic diversity and growth responses of Indonesian tomato (Solanum lycopersicum L.) genotypes under lead stress. Science Progress, 105(3), 00368504221122364. https://doi.org/10.1177/00368504221122364
Jayawerdana, D. M., Heckathorn, S. A., Bista, D. R., & Boldt, J. K. (2018). Elevated carbon dioxide plus chronic warming causes dramatic increases in leaf angle in tomato, which correlates with reduced plant growth. Plant, Cell & Environment, 42(4), 1247–1256. https://doi.org/10.1111/pce.13489
Jonsson, K., Routier‐Kierzkowska, A. L., & Bhalerao, R. P. (2025). The asymmetry engine: How plants harness asymmetries to shape their bodies. New Phytologist, 245(6), 2422–2427. https://doi.org/10.1111/nph.20413
Kumar, V., Yadav, S., Heymans, A., & Robert, S. (2025). “Shape of cell”—An auxin and cell wall duet. Physiologia Plantarum, 177(3), e70294. https://doi.org/10.1111/ppl.70294
Lee, N., Hwang, D. Y., Lee, H. G., Hwang, H., Kang, H. W., Lee, W., ... & Song, Y. H. (2025). ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. Plant Physiology, 197(1), kiae550. https://doi.org/10.1093/plphys/kiae550
Li, N., Euring, D., Cha, J. Y., Lin, Z., Lu, M., Huang, L.-J., & Kim, W. Y. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science, 11, 627969. https://doi.org/10.3389/fpls.2020.627969
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Mao, L., Deng, M., Jiang, S., Zhu, H., Yang, Z., Yue, Y., & Zhao, K. (2020). Characterization of the DREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Frontiers in Plant Science, 11, 554520. https://doi.org/10.3389/fpls.2020.554520
Mitalo, O. W., Kang, S. W., Tran, L. T., Kubo, Y., Ariizumi, T., & Ezura, H. (2024). Corrigendum: Transcriptomic analysis in tomato fruit reveals divergences in genes involved in cold stress response and fruit ripening. Frontiers in Plant Science, 15, 1421564. https://doi.org/10.3389/fpls.2024.1421564
Mubarok, S., Jadid, N., Widiastuti, A., Derajat Matra, D., Budiarto, R., Lestari, F. W., ... & Ezura, H. (2023). Parthenocarpic tomato mutants, iaa9-3 and iaa9-5, show plant adaptability and fruiting ability under heat-stress conditions. Frontiers in Plant Science, 14, 1090774. https://doi.org/10.3389/fpls.2023.1090774
Mubarok, S., Nuraini, A., Hamdani, J. S., Suminar, E., Kusumiyati, K., Budiarto, R., ... & Ezura, H. (2024). Antioxidative response of parthenocarpic tomato, iaa9-3 and iaa9-5, under heat stress condition. Plant Physiology and Biochemistry, 207, 108333. https://doi.org/10.1016/j.plaphy.2024.108333
Park, B. M., Jeong, H. B., Yang, E. Y., Kim, M. K., Kim, J. W., Chae, W., ... & Kim, S. (2023). Differential responses of cherry tomatoes (Solanum lycopersicum) to long-term heat stress. Horticulturae, 9(3), 343. https://doi.org/10.3390/horticulturae9030343
Rahmat, B. P. N., Octavianis, G., Budiarto, R., Jadid, N., Widiastuti, A., Matra, D. D., … & Mubarok, S. (2023). SlIAA9 mutation maintains photosynthetic capabilities under heat-stress conditions. Plants, 12(2), 378. https://doi.org/10.3390/plants12020378
Rehaman, A., Khan, S., Rawat, B., Gaira, K. S., Asgher, M., Semwal, P., & Tripathi, V. (2025). Mechanistic insights into plant drought tolerance: A multi-level perspective. Journal of Crop Health, 77(2), 53. https://doi.org/10.1007/s10343-025-01115-x
Saito, T., Ariizumi, T., Okabe, Y., Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., ... & Ezura, H. (2011). TOMATOMA: A novel tomato mutant database distributing Micro-Tom mutant collections. Plant and Cell Physiology, 52(2), 283–296. https://doi.org/10.1093/pcp/pcr004
Suliman, A. A., Elkhawaga, F. A., Zargar, M., Bayat, M., Pakina, E., & Abdelkader, M. (2024). Boosting resilience and efficiency of tomato fields to heat stress tolerance using cytokinin (6-benzylaminopurine). Horticulturae, 10(2), 170. https://doi.org/10.3390/horticulturae10020170
Tanaka, A., & Ito, H. (2025). Chlorophyll degradation and its physiological function. Plant and Cell Physiology, 66(2), 139–152. https://doi.org/10.1093/pcp/pcae093
Vidya, S. M., Kumar, H. S. V., Bhatt, R. M., Laxman, R. H., & Ravishankar, K. V. (2018). Transcriptional profiling and genes involved in acquired thermotolerance in banana: A non-model crop. Scientific Reports, 8(1), 10683. https://doi.org/10.1038/s41598-018-27820-4
Wang, R., & de Maagd, R. A. (2025). Transcriptional control of tomato fruit development and ripening. Journal of Experimental Botany, 76(21), 6311–6326. https://doi.org/10.1093/jxb/eraf357
Wang, X., Xu, C., Cai, X., Wang, Q., & Dai, S. (2017). Heat-responsive photosynthetic and signaling pathways in plants: Insight from proteomics. International Journal of Molecular Sciences, 18(10), 2191. https://doi.org/10.3390/ijms18102191
Xiong, Y., & Jiao, Y. (2019). The diverse roles of auxin in regulating leaf development. Plants, 8(7), 243. https://doi.org/10.3390/plants8070243
Yavas, I., Jamal, M. A., Ul Din, K., Ali, S., Hussain, S., & Farooq, M. (2024). Drought-induced changes in leaf morphology and anatomy: Overview, implications and perspectives. Polish Journal of Environmental Studies, 33(2), 1517–1530. https://doi.org/10.15244/pjoes/174476
Yuan, L., Tang, L., Zhu, S., Hou, J., Chen, G., Liu, F., … & Wang, G. (2017). Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Societatis Botanicorum Poloniae, 86(2), 3554–3570. https://doi.org/10.5586/asbp.3554
Yuan, Y., Mei, L., Wu, M., Wei, W., Shan, W., Gong, Z., ... & Deng, W. (2018). SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. Journal of Experimental Botany, 69(22), 5507–5518. https://doi.org/10.1093/jxb/ery328
Yuanhao, Z., Luo, X., Gao, Y., Sun, Z., Huang, K., Gao, W., … & Xie, L. (2025). Lycopene detection in cherry tomatoes with feature enhancement and data fusion. Food Chemistry, 463, 141183. https://doi.org/10.1016/j.foodchem.2024.141183
Zhang, Y., Wu, L., Yuan, K., & Yu, Y. (2025). Photoreceptor-dependent signaling in plant responses to thermomorphogenesis and heat stress. Plant Physiology and Biochemistry, 228, 110202. https://doi.org/10.1016/j.plaphy.2025.110202
Zhao, N., Zhou, Z., Cui, S., Zhang, X., Zhu, S., Wang, Y., ... & Wenjing, L. (2025). Advanced imaging-enabled understanding of cell wall remodeling mechanisms mediating plant drought stress tolerance. Frontiers in Plant Science, 16, 1635078. https://doi.org/10.3389/fpls.2025.1635078
Refbacks
- There are currently no refbacks.










