Tomato Mutants SlIAA9 Exhibit Thermo-Morphophysiological Characters and Enhanced SIDREBA4 Gene Expression

Cory Rafsyanyani, Titah Rigel Anjalani, Anisa Esti Rahayu, Syariful Mubarok, Ani Widiastuti, Deden Derajat Matra, Hiroshi Ezura, Nurul Jadid

Abstract

Rising temperatures associated with climate change threaten tomato productivity, yet the contribution of auxin signaling components to heat-stress adaptation remains incompletely understood. The IAA9 gene, encoding an Aux/IAA transcriptional repressor, is well known for its role in auxin-regulated development, but its role in heat responses is still unclear. This study aims to elucidate the function of IAA9 in modulating tomato responses under heat stress conditions. Researchers utilized tomato iaa9-3 and iaa9-5 mutants and exposed them to prolonged elevated temperatures of 40 to 45 °C for 6 weeks to assess morphophysiological traits, and to 38 to 40 °C for 6 days to evaluate molecular responses through SlDREBA4 gene expression analysis. Under prolonged heat stress, all genotypes exhibited reduced leaf area, leaf number, and total chlorophyll content, accompanied by increased plant height compared to plants grown under normal conditions. Specifically, wild-type Micro-Tom (WT-MT) showed the lowest values in leaf area (165.89 cm²), leaf number (23 leaves), and total chlorophyll content (115.7 µg g-1). In contrast, the iaa9-3 and iaa9-5 mutants recorded the highest plant heights at 11.98 and 12.13 cm, respectively, indicating a differential growth response under stress. Gene expression analysis revealed that SlDREBA4 expression was upregulated in both iaa9-3 and iaa9-5 mutants compared to normal temperature conditions, with increases of 0.45-fold and 1.78-fold, respectively. These results indicate that IAA9 mutations confer enhanced thermotolerance in tomato, as reflected by altered morphology and increased heat-responsive gene expression. This study highlights IAA9 as a potential genetic target for improving heat stress resilience in tomato breeding programs.

Keywords

auxin; heat stress; IAA9; SlDREBA4 gene expression; thermo-morphogenesis

Full Text:

PDF

References

Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088

Ariizumi, T., Shinozaki, Y., & Ezura, H. (2013). Genes that influence yield in tomato. Breeding Science, 63(1), 3–13. https://doi.org/10.1270/jsbbs.63.3

Cao, X., Li, W., Ren, A., Ji, C., Zhan, X., & Hu, T. (2025). SlIAA9 negatively regulates tomato (Solanum lycopersicum) tolerance to drought stress. Gene, 970, 149788. https://doi.org/10.1016/j.gene.2025.149788

Castro-Estrada, J., Salazar, S. M., Mariotti-Martínez, J. A., Cabello, J. V., Chan, R. L., & Welchen, E. (2025). Mechanical stress induces anatomical changes, tomato early flowering, and increased yield involving ethylene and auxins. Journal of Experimental Botany, 76(21), 6487–6507. https://doi.org/10.1093/jxb/eraf252

Cui, J., Zhao, J., Zhang, H., Li, J., Jiang, L., & Wang, N. (2024). Dynamic changes in tomato (Solanum lycopersicum) RNA m6A modification during seed germination and under microgravity conditions. Horticulturae, 11(3), 282. https://doi.org/10.3390/horticulturae11030282

Deng, M. H., Lv, J. H., Wang, Z. R., Zhu, H. S., Yang, Z. A., Yue, Y. L., & Zhao, K. (2020). Two promoter regions confer heat-induced activation of SlDREBA4 in Solanum lycopersicum. Biochemical and Biophysical Research Communications, 524(3), 689–695. https://doi.org/10.1016/j.bbrc.2020.01.153

Djangsou, H., Francia, E., Ronga, D., & Buti, M. (2019). Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Scientia Horticulturae, 249, 49–58. https://doi.org/10.1016/j.scienta.2019.01.042

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., & Farooq, A. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147. https://doi.org/10.3389/fpls.2017.01147

Farjon, G., Itzhaky, Y., Khoroshevsky, F., & Bar-Hillel, A. (2021). Leaf counting: Fusing network components for improved accuracy. Frontiers in Plant Science, 12, 575751. https://doi.org/10.3389/fpls.2021.575751

Gommers, C. (2020). Keep cool and open up: Temperature-induced stomatal opening. Plant Physiology, 182(3), 1188–1189. https://doi.org/10.1104/pp.20.00158

Graci, S., & Barone, A. (2024). Tomato plant response to heat stress: A focus on candidate genes for yield-related traits. Frontiers in Plant Science, 14, 1245661. https://doi.org/10.3389/fpls.2023.1245661

Jadid, N., Mardika, R. K., Nurhidayati, T., & Irawan, M. I. (2016). Reverse transcription-PCR analysis of geranylgeranyl diphosphate synthase (JcGGPPS) in Jatropha curcas L. and in silico analysis of casbene synthase (JcCS) among Euphorbiaceae. AIP Conference Proceedings, 1744(1), 020042. https://doi.org/10.1063/1.4953516

Jadid, N., Maziyah, R., Nurcahyani, D. D., & Mubarokah, N. R. (2017). Growth and physiological responses of some Capsicum frutescens varieties to copper stress. AIP Conference Proceedings, 1854(1), 020018. https://doi.org/10.1063/1.4985409

Jadid, N., Safitri, C. E., Jannah, A. L., Muslihatin, W., Purwani, K. I., & Mas’ud, F. (2022). Genetic diversity and growth responses of Indonesian tomato (Solanum lycopersicum L.) genotypes under lead stress. Science Progress, 105(3), 00368504221122364. https://doi.org/10.1177/00368504221122364

Jayawerdana, D. M., Heckathorn, S. A., Bista, D. R., & Boldt, J. K. (2018). Elevated carbon dioxide plus chronic warming causes dramatic increases in leaf angle in tomato, which correlates with reduced plant growth. Plant, Cell & Environment, 42(4), 1247–1256. https://doi.org/10.1111/pce.13489

Jonsson, K., Routier‐Kierzkowska, A. L., & Bhalerao, R. P. (2025). The asymmetry engine: How plants harness asymmetries to shape their bodies. New Phytologist, 245(6), 2422–2427. https://doi.org/10.1111/nph.20413

Kumar, V., Yadav, S., Heymans, A., & Robert, S. (2025). “Shape of cell”—An auxin and cell wall duet. Physiologia Plantarum, 177(3), e70294. https://doi.org/10.1111/ppl.70294

Lee, N., Hwang, D. Y., Lee, H. G., Hwang, H., Kang, H. W., Lee, W., ... & Song, Y. H. (2025). ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. Plant Physiology, 197(1), kiae550. https://doi.org/10.1093/plphys/kiae550

Li, N., Euring, D., Cha, J. Y., Lin, Z., Lu, M., Huang, L.-J., & Kim, W. Y. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science, 11, 627969. https://doi.org/10.3389/fpls.2020.627969

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

Mao, L., Deng, M., Jiang, S., Zhu, H., Yang, Z., Yue, Y., & Zhao, K. (2020). Characterization of the DREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Frontiers in Plant Science, 11, 554520. https://doi.org/10.3389/fpls.2020.554520

Mitalo, O. W., Kang, S. W., Tran, L. T., Kubo, Y., Ariizumi, T., & Ezura, H. (2024). Corrigendum: Transcriptomic analysis in tomato fruit reveals divergences in genes involved in cold stress response and fruit ripening. Frontiers in Plant Science, 15, 1421564. https://doi.org/10.3389/fpls.2024.1421564

Mubarok, S., Jadid, N., Widiastuti, A., Derajat Matra, D., Budiarto, R., Lestari, F. W., ... & Ezura, H. (2023). Parthenocarpic tomato mutants, iaa9-3 and iaa9-5, show plant adaptability and fruiting ability under heat-stress conditions. Frontiers in Plant Science, 14, 1090774. https://doi.org/10.3389/fpls.2023.1090774

Mubarok, S., Nuraini, A., Hamdani, J. S., Suminar, E., Kusumiyati, K., Budiarto, R., ... & Ezura, H. (2024). Antioxidative response of parthenocarpic tomato, iaa9-3 and iaa9-5, under heat stress condition. Plant Physiology and Biochemistry, 207, 108333. https://doi.org/10.1016/j.plaphy.2024.108333

Park, B. M., Jeong, H. B., Yang, E. Y., Kim, M. K., Kim, J. W., Chae, W., ... & Kim, S. (2023). Differential responses of cherry tomatoes (Solanum lycopersicum) to long-term heat stress. Horticulturae, 9(3), 343. https://doi.org/10.3390/horticulturae9030343

Rahmat, B. P. N., Octavianis, G., Budiarto, R., Jadid, N., Widiastuti, A., Matra, D. D., … & Mubarok, S. (2023). SlIAA9 mutation maintains photosynthetic capabilities under heat-stress conditions. Plants, 12(2), 378. https://doi.org/10.3390/plants12020378

Rehaman, A., Khan, S., Rawat, B., Gaira, K. S., Asgher, M., Semwal, P., & Tripathi, V. (2025). Mechanistic insights into plant drought tolerance: A multi-level perspective. Journal of Crop Health, 77(2), 53. https://doi.org/10.1007/s10343-025-01115-x

Saito, T., Ariizumi, T., Okabe, Y., Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., ... & Ezura, H. (2011). TOMATOMA: A novel tomato mutant database distributing Micro-Tom mutant collections. Plant and Cell Physiology, 52(2), 283–296. https://doi.org/10.1093/pcp/pcr004

Suliman, A. A., Elkhawaga, F. A., Zargar, M., Bayat, M., Pakina, E., & Abdelkader, M. (2024). Boosting resilience and efficiency of tomato fields to heat stress tolerance using cytokinin (6-benzylaminopurine). Horticulturae, 10(2), 170. https://doi.org/10.3390/horticulturae10020170

Tanaka, A., & Ito, H. (2025). Chlorophyll degradation and its physiological function. Plant and Cell Physiology, 66(2), 139–152. https://doi.org/10.1093/pcp/pcae093

Vidya, S. M., Kumar, H. S. V., Bhatt, R. M., Laxman, R. H., & Ravishankar, K. V. (2018). Transcriptional profiling and genes involved in acquired thermotolerance in banana: A non-model crop. Scientific Reports, 8(1), 10683. https://doi.org/10.1038/s41598-018-27820-4

Wang, R., & de Maagd, R. A. (2025). Transcriptional control of tomato fruit development and ripening. Journal of Experimental Botany, 76(21), 6311–6326. https://doi.org/10.1093/jxb/eraf357

Wang, X., Xu, C., Cai, X., Wang, Q., & Dai, S. (2017). Heat-responsive photosynthetic and signaling pathways in plants: Insight from proteomics. International Journal of Molecular Sciences, 18(10), 2191. https://doi.org/10.3390/ijms18102191

Xiong, Y., & Jiao, Y. (2019). The diverse roles of auxin in regulating leaf development. Plants, 8(7), 243. https://doi.org/10.3390/plants8070243

Yavas, I., Jamal, M. A., Ul Din, K., Ali, S., Hussain, S., & Farooq, M. (2024). Drought-induced changes in leaf morphology and anatomy: Overview, implications and perspectives. Polish Journal of Environmental Studies, 33(2), 1517–1530. https://doi.org/10.15244/pjoes/174476

Yuan, L., Tang, L., Zhu, S., Hou, J., Chen, G., Liu, F., … & Wang, G. (2017). Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Societatis Botanicorum Poloniae, 86(2), 3554–3570. https://doi.org/10.5586/asbp.3554

Yuan, Y., Mei, L., Wu, M., Wei, W., Shan, W., Gong, Z., ... & Deng, W. (2018). SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. Journal of Experimental Botany, 69(22), 5507–5518. https://doi.org/10.1093/jxb/ery328

Yuanhao, Z., Luo, X., Gao, Y., Sun, Z., Huang, K., Gao, W., … & Xie, L. (2025). Lycopene detection in cherry tomatoes with feature enhancement and data fusion. Food Chemistry, 463, 141183. https://doi.org/10.1016/j.foodchem.2024.141183

Zhang, Y., Wu, L., Yuan, K., & Yu, Y. (2025). Photoreceptor-dependent signaling in plant responses to thermomorphogenesis and heat stress. Plant Physiology and Biochemistry, 228, 110202. https://doi.org/10.1016/j.plaphy.2025.110202

Zhao, N., Zhou, Z., Cui, S., Zhang, X., Zhu, S., Wang, Y., ... & Wenjing, L. (2025). Advanced imaging-enabled understanding of cell wall remodeling mechanisms mediating plant drought stress tolerance. Frontiers in Plant Science, 16, 1635078. https://doi.org/10.3389/fpls.2025.1635078

Refbacks

  • There are currently no refbacks.