Impact of Chitosan and Folic Acid on Growth, Leaf Qualities, and Antioxidant Compounds of Purslane (Portulaca oleracea L.)

Thamena Farhan Kazem Sachet, Maher Hameed Al-Mohammad

Abstract

Purslane (Portulaca oleracea L.) is a nutrient-rich leafy vegetable valued for its nutritional and medicinal properties. Improving its quality and bioactive compounds through eco-friendly inputs is essential for sustainable production. This study evaluated the effects of foliar-applied chitosan and folic acid on growth, leaf quality, and antioxidant compounds of purslane. A field experiment was conducted in a randomized complete block design with chitosan (0, 50, and 100 mg l⁻¹) and folic acid (0, 25, and 50 mg l⁻¹), applied singly or in combination. The combined treatment of 100 mg l⁻¹ chitosan and 50 mg l⁻¹ folic acid was the most effective, producing plant height of 36.7 cm, leaf area of 17.8 cm², and 92 leaves plant⁻¹, representing 27 to 30% increases over the control. Fresh weight reached 91.2 g plant⁻¹, a 26% improvement. Leaf quality improved as total chlorophyll (33.2 mg 100 g⁻¹ FW) and carotenoids (5.46 mg 100 g⁻¹ FW) rose by 13% and 10%, respectively. Antioxidant levels were also enhanced: phenols (41.12 mg GAE g⁻¹ DW), flavonoids (15.91 mg RE g⁻¹ DW), tannins (20.11 mg TAE g⁻¹ DW), saponins (40.65 mg g⁻¹ DW), and ascorbic acid (55.82 mg 100 g⁻¹ FW), with 8 to 22% increases over single treatments and 12 to 31% over the control. DPPH radical scavenging activity reached 77.32%, 54% higher than the control (50.11%) and greater than single applications of chitosan (62.33%) or folic acid (69.58%), confirming a synergistic effect. These results suggest that chitosan and folic acid can serve as cost-effective and eco-friendly biostimulants to enhance purslane production and nutritional value under sustainable agriculture.

Keywords

DPPH; flavonoids; phenols; secondary metabolites; synergistic

Full Text:

PDF

References

Abdiazar, N., Zahedi, H., Sharghi, Y., Modarres-Sanavy, S. A. M., & Alipour, A. (2024). Comparing effects of folic acid, epibrassinolide, chitosan and glutathione foliar treatments on safflower’s physiology and yield during water stress. Russian Journal of Plant Physiology, 71(1), 35. https://doi.org/10.1134/S1021443723603312

Adegbusi, H. S., Ismail, A., Mohd Esa, N., & Azuan Mat Daud, Z. (2022). Application of Folin-Ciocalteau colorimetric method in the determination of total tannin in maize and soybean food products. International Food Research Journal, 29(5), 1110–1119. https://doi.org/10.47836/ifrj.29.5.13

Ahmed, K., Khan, M., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production- A review. Carbohydrate Polymers, 227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331

Al-Elwany, O. A., Hemida, K. A., Abdel-Razek, M. A., El-Mageed, T. A. A., El-Saadony, M. T., AbuQamar, S. F., ... & Taha, R. S. (2022). Impact of folic acid in modulating antioxidant activity, osmoprotectants, anatomical responses, and photosynthetic efficiency of Plectranthus amboinicus under salinity conditions. Frontiers in Plant Science, 13, 887091. https://doi.org/10.3389/fpls.2022.887091

Al-Maliky, A. W. A., Jerry, A. N., & Obead, F. I. (2019). The effects of foliar spraying of folic acid and cysteine on growth, chemical composition of leaves and green yield of faba bean (Vicia faba L). Basrah Journal of Agricultural Sciences, 32(2), 223–229. https://doi.org/10.37077/25200860.2019.212

Al-Saadi, S. A. M., Qader, K. O., Hasan, H. M., Eskandari, M., & Meftahizade, H. (2025). Synergistic effects of melatonin and chitosan in alleviating drought stress in saffron: (Crocus sativus) insights into plant growth and biochemical responses. BMC Plant Biology, 25(1), 1112. https://doi.org/10.1186/s12870-025-07026-3

Alsamadany, H., Mansour, H., Elkelish, A., & Ibrahim, M. F. (2022). Folic acid confers tolerance against salt stress-induced oxidative damages in snap beans through regulation growth, metabolites, antioxidant machinery and gene expression. Plants, 11(11), 1459. https://doi.org/10.3390/plants11111459

Al Wase, H. M., & Zahwan, T. A. (2022). Effect of planting dates and organic and foliar fertilizers on the levels of some chemical compounds of Portulaca oleracea L. British Journal of Global Ecology and Sustainable Development, 6, 55–74. Retrieved from https://journalzone.org/index.php/bjgesd/article/view/82/76

Badr ElSayed, E. A., Bakhom, G. S., Sadak, M. S., & Amin, G. A. (2025). Enhancing barley growth and yield under drought stress through exogenous folic acid application. Egyptian Journal of Agronomy, 47(1), 157–165. https://doi.org/10.21608/agro.2025.310178.1485

Bailey, S. W., & Ayling, J. E. (2009). The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proceedings of the National Academy of Sciences, 106(36), 15424–15429. https://doi.org/10.1073/pnas.0902072106

Bakhoum, G., Sadak, M., & Tawfic, M. (2022). Chitosan and chitosan nanoparticle effect on growth, productivity and some biochemical aspects of Lupinustermis L plant under drought conditions. Egyptian Journal of Chemistry, 65(5), 537–549. https://doi.org/10.21608/ejchem.2021.97832.4563

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326

Baviskar, S. B., Raut, R. A., Shende, P. V., Madke, V., Kamdi, S., Mahentesh, V., & Shivran, A. (2025). Chitosan is an efficient tool for precision agriculture andsustainability: A review. Plant Archives, 25(1), 1679–1695. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.244

Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., ... & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture10120624

Chrysargyris, A., Kloukina, C., Vassiliou, R., Tomou, E. M., Skaltsa, H., & Tzortzakis, N. (2019). Cultivation strategy to improve chemical profile and antioxidant activity of Sideritis perfoliata L. subsp. perfoliata. Industrial Crops and Products, 140, 111694. https://doi.org/10.1016/j.indcrop.2019.111694

Deotale, R. D., Thakare, O. G., Shende, P. V., Patil, S. R., Kamdi, S. R., Meshram, M. P., & Madke, V. S. (2019). Impact of foliar sprays of chitosan and IBA on chemical, biochemical and yield contributing parameters of pigeonpea. Journal of Soils and Crops, 29(2), 306–311. Retrieved from https://www.journalofsoilsandcrops.com/Download/dec2019issue/17.pdf

El-Moghazy, T. F. A., & Al-Azzony, E. A. A. (2019). Effect of ascorbic, folic acids and hibiscus extract on geranium (Pelargonium graveolens). American Journal of Plant Biology, 4(4), 46–56. https://doi.org/10.11648/j.ajpb.20190404.11

El-Sherbeny, S. E., El-Saadany, S. S., Youssef, A. A., El-Massry, R. A., & El-Newary, S. A. (2015). Response of Portulaca oleracea L. plants to various fertilizers ratios on growth, yield and chemical composition under Egyption conditions. World Journal of Pharmaceutical Sciences, 3(12), 2297–2307. Retrieved from https://wjpsonline.com/index.php/wjps/article/view/portulaca-oleracea-fertilizers-growth-chemical-composition

Elsheery, N. I., Sunoj, V. S. J., Wen, Y., Zhu, J. J., Muralidharan, G., & Cao, K. F. (2020). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry, 149, 50–60. https://doi.org/10.1016/j.plaphy.2020.01.035

Ercisli, S., Coruh, I., Gormez, A., & Sengul, M. (2008). Antioxidant and antibacterial activities of Portulaca oleracea L. grown wild in Turkey. Italian Journal of Food Science, 20(4), 533–542. Retrieved from https://www.researchgate.net/publication/269688138_Antioxidant_and_antibacterial_activities_of_portulaca_oleracea_l_grown_wild_in_Turkey

Farkhondeh, T., Samarghandian, S., Azimi-Nezhad, M., & Hozeifi, S. (2019). The hepato-protective effects of Portulaca oleracea L. extract. Current Drug Discovery Technologies, 16(2), 122–126. https://doi.org/10.2174/1570163815666180330142724

Godase, H. M., Mane, A. V., Mahadik, S. G., Pethe, U. B., & Kasture, M. C. (2023). Effect of chitosan by seed priming and foliar application on growth and yield of Wal (Lablab purpureus L. Sweet) under water stress. The Pharma Innovation Journal, 12(2), 1213–1217. Retrieved from https://www.thepharmajournal.com/archives/2023/vol12issue2/PartO/12-2-32-103.pdf

Gorelova, V., Ambach, L., Rébeillé, F., Stove, C., & Van Der Straeten, D. (2017). Folates in plants: Research advances and progress in crop biofortification. Frontiers in Chemistry, 5, 21. https://doi.org/10.3389/fchem.2017.00021

Hagos, M., Redi-Abshiro, M., Chandravanshi, B. S., & Yaya, E. E. (2022). New analytical methods for the determination of ascorbic acid content in aqueous extracts of flesh, peel and seeds of pumpkin (Cucurbita maxima). Bulletin of the Chemical Society of Ethiopia, 36(2), 277–290. https://doi.org/10.4314/bcse.v36i2.3

Hassan, N. M., El-bastawisy, Z. M., Badran, E. G., & Hamady, E. M. (2016). Role of stigmasterol and folic acid in improving the growth and yield of flax under drough. Scientific Journal for Damietta Faculty of Science, 6(1), 40–48. https://doi.org/10.21608/sjdfs.2016.194531

Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313–326. https://doi.org/10.1007/s12298-018-0633-1

Jacob, M. E., Nair, D. S., Sreekala, G. S., Alex, S., Rani, T. S., & Viji, M. M. (2023). Effect of chitosan foliar spray on plant growth parameters in Ashwagandha. The Pharma Innovation Journal, 12(9), 1393–1398. Retrieved from https://www.thepharmajournal.com/archives/2023/vol12issue9/PartO/12-9-78-321.pdf

Kamel, I., El-Ghareeb, M., Guida, M., El-Mezayen, H., & Ismail, L. (2024). Purslane seed oil: A promising adjuvant for doxorubicin in ehrlich ascites carcinoma therapy. Alfarama Journal of Basic & Applied Sciences, 5(3), 341–349. https://doi.org/10.21608/ajbas.2024.261360.1207

Khalil, H. A., & Badr Eldin, R. M. (2021). Chitosan improves morphological and physiological attributes of grapevines under deficit irrigation conditions. Journal of Horticultural Research, 29(1), 9–22. https://doi.org/10.2478/johr-2021-0003

Khan, M. T., Ahmed, S., Sardar, R., Shareef, M., Abbasi, A., Mohiuddin, M., ... & Golokhvast, K. S. (2022). Impression of foliar-applied folic acid on coriander (Coriandrum sativum L.) to regulate aerial growth, biochemical activity, and essential oil profiling under drought stress. Frontiers in Plant Science, 13, 1005710. https://doi.org/10.3389/fpls.2022.1005710

Khodadadi, H., Pakdel, R., Khazaei, M., Niazmand, S., Bavarsad, K., & Hadjzadeh, M. A. R. (2018). A comparison of the effects of Portulaca oleracea seeds hydro-alcoholic extract and vitamin C on biochemical, hemodynamic and functional parameters in cardiac tissue of rats with subclinical hyperthyroidism. Avicenna Journal of Phytomedicine, 8(2), 161–169. https://doi.org/10.22038/ajp.2017.21556.1812

Kurniawati, P., Gusrianti, R., Dwisiwi, B. B., Purbaningtias, T. E., & Wiyantoko, B. (2017). Verification of spectrophotometric method for nitrate analysis in water samples. AIP Conference Proceedings, 1911, 020012. https://doi.org/10.1063/1.5016005

Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7), 996. https://doi.org/10.3390/ijms17070996

Miraj, S. (2016). Healing properties of purslane: A systematic review study. Der Pharmacia Lettre, 8(19), 437–441. Retrieved from https://www.scholarsresearchlibrary.com/articles/healing-properties-of-purslane-a-systematic-review-study.pdf

Okuda, S., Wajima, T., Yamada, T., Nakaminami, H., Ikoshi, H., & Noguchi, N. (2021). In vitro growth-inhibitory effects of Portulaca oleracea L. formulation on intestinal pathogens. Access Microbiology, 3, 000208. https://doi.org/10.1099/acmi.0.000208

Pereira, D. M., Valentão, P., Pereira, J. A., & Andrade, P. B. (2009). Phenolics: From chemistry to biology. Molecules, 14(6), 2202–2211. https://doi.org/10.3390/molecules14062202

Popoola, O. E., Doherty, V. F., Odusami, J. O., & Durowoju, O. S. (2014). Oxalate content of some Nigerian tubers using titrimetric and UV-spectrophotometric methods. Academic Journal of Agricultural Research, 2(2), 54–57. http://dx.doi.org/10.15413/ajar.2014.0101

Raut, A. N., Deotale, R. D., Gopale, R. O., Baviskar, S. B., & Madkes, V. S. (2022). Evaluation of chitosan concentrations for improving chemical, biochemical and yield contributing parameters and yield of chickpea. Journal of Soils and Crops, 32(1), 133–140. Retrieved from https://www.journalofsoilsandcrops.com/Download/JUN2022/21.pdf

Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers, 15(13), 2867. https://doi.org/10.3390/polym15132867

Sablania, P., Chakraborty, M., & Keshari, J. R. (2019). Enhancing sensitivity of phenol-sulfuric acid assay using orthophosphoric acid as modifier. International Journal of Scientific Reports, 5(6), 150–153. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20192076

Sathiyabama, M., & Manikandan, A. (2021). Folic acid-chitosan nanoparticles as a novel nano-biostimulant for enhanced plant growth and disease resistance. Carbohydrate Polymers, 271, 118434. https://doi.org/10.1016/j.carbpol.2021.118434

Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4, S359–S367. https://doi.org/10.12980/APJTB.4.2014C1030

Sharif, R., Mujtaba, M., Ur Rahman, M., Shalmani, A., Ahmad, H., Anwar, T., ... & Wang, X. (2018). The multifunctional role of chitosan in horticultural crops; A review. Molecules, 23(4), 872. https://doi.org/10.3390/molecules23040872

Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932

Vittaya, L., Charoendat, U., Janyong, S., Ui-Eng, J., & Leesakul, N. (2022). Comparative analyses of saponin, phenolic, and flavonoid contents in various parts of Rhizophora mucronata and Rhizophora apiculata and their growth inhibition of aquatic pathogenic bacteria. Journal of Applied Pharmaceutical Science, 12(11), 111–121. https://doi.org/10.7324/JAPS.2022.121113

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

Zaman, S., Hu, S., Alam, M. A., Du, H., & Che, S. (2019). The accumulation of fatty acids in different organs of purslane under salt stress. Scientia Horticulturae, 250, 236–242. https://doi.org/10.1016/j.scienta.2019.02.051

Refbacks

  • There are currently no refbacks.