Halotolerant Rhizobacteria Isolated from Salinity-Impacted Marginal Soils: Characterization and Potential for Plant Growth Promotion
Abstract
Keywords
Full Text:
PDFReferences
AbuQamar, S. F., El-Saadony, M. T., Saad, A. M., Desoky, E. S. M., Elrys, A. S., Abd El-Mageed, T. A., ... & El-Tarabily, K. A. (2024). Halotolerant plant growth-promoting rhizobacteria improve soil fertility and plant salinity tolerance for sustainable agriculture—A review. Plant Stress, 12, 100482. https://doi.org/10.1016/j.stress.2024.100482
Ali, K. A., Noraldeen, S. S., & Yaseen, A. A. (2021). An evaluation study for chlorophyll estimation techniques. Sarhad Journal of Agriculture, 37(4), 1458–1465. https://doi.org/10.17582/journal.sja/2021/37.4.1458.1465
Ali, S., Khan, M., & Moon, Y. S. (2025). Synergistic effect of Serratia fonticola and Pseudomonas koreensis on mitigating salt stress in Cucumis sativus L. Current Issues in Molecular Biology, 47(3), 194. https://doi.org/10.3390/cimb47030194
Alonazi, M. A., Alwathnani, H. A., Al-Barakah, F. N. I., & Alotaibi, F. (2025). Native plant growth-promoting rhizobacteria containing ACC deaminase promote plant growth and alleviate salinity and heat stress in maize (Zea mays L.) plants in Saudi Arabia. Plants, 14(7), 1107. https://doi.org/10.3390/plants14071107
Ariyani, M. D., Dewi, T. K., Pujiyanto, S., & Suprihadi, A. (2021). Isolasi dan karakterisasi plant growth promoting rhizobacteria dari perakaran kelapa sawit pada lahan gambut. Bioma, 23(2), 159–171. https://doi.org/10.14710/bioma.23.2.159-171
Arora, N. K., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., ... & Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26, 69–82. https://doi.org/10.1016/j.jare.2020.07.003
Azadikhah, M., Jamali, F., Nooryazdan, H. R., & Bayat, F. (2019). Growth promotion and yield enhancement of barley cultivars using ACC deaminase producing Pseudomonas fluorescens strains under salt stress. Spanish Journal of Agricultural Research, 17(1), e0801. https://doi.org/10.5424/sjar/2019171-13828
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., … & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473
Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253. https://doi.org/10.3390/plants12122253
Baldani, L., & Dobereiner, J. (1980). Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biology and Biochemistry, 12(4), 433–439. https://doi.org/10.1016/0038-0717(80)90021-8
Bhagat, N., Raghav, M., Dubey, S., & Bedi, N. (2021). Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. Journal of Microbiology and Biotechnology, 31(8), 1045–1059. https://doi.org/10.4014/jmb.2105.05009
Biswas, S., Nath, A., & Pal, R. (2021). A comparison of bacterial variability across biogeographic regions based on PGPR. International Journal of Environment, Agriculture and Biotechnology, 6(6), 2456–1878. https://dx.doi.org/10.22161/ijeab.66.8
Chandran, H., Meena, M., & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13(19), 10986. https://doi.org/10.3390/su131910986
Chaudhry, U. K., Gökçe, Z. N. Ö., & Gökçe, A. F. (2022). The influence of salinity stress on plants and their molecular mechanisms. Biology and Life Sciences Forum, 11(1), 31. https://doi.org/10.3390/iecps2021-12017
Chen, Z., Zhou, W., Sui, X., Xu, N., Zhao, T., Guo, Z., … & Wang, Q. (2022). Plant growth-promoting rhizobacteria with ACC deaminase activity enhance maternal lateral root and seedling growth in switchgrass. Frontiers in Plant Science, 12, 800783. https://doi.org/10.3389/fpls.2021.800783
Dakshayini, E., Muthuramu, S., Maragatham, S., Anandham, R., & Balachandar, D. (2025). Rhizosphere microbiome and functioning in alternative rice cropping methods: A critical review for rice sustainability. Frontiers in Bioscience (Elite Edition), 17(1), 25926. https://doi.org/10.31083/FBE25926
Desoky, E. S. M., Saad, A. M., El-Saadony, M. T., Merwad, A. R. M., & Rady, M. M. (2020). Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatalysis and Agricultural Biotechnology, 30, 101878. https://doi.org/10.1016/j.bcab.2020.101878
Dey, G., Banerjee, P., Sharma, R. K., Maity, J. P., Etesami, H., Shaw, A. K., … & Chen, C. Y. (2021). Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review. Agronomy, 11(8), 1552. https://doi.org/10.3390/agronomy11081552
Dragojević, M., Stankovic, N., Djokic, L., Raičević, V., & Jovičić-Petrović, J. (2023). Endorhizosphere of indigenous succulent halophytes: A valuable resource of plant growth promoting bacteria. Environmental Microbiome, 18(1), 20. https://doi.org/10.1186/s40793-023-00477-x
Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 2791. https://doi.org/10.3389/fmicb.2019.02791
Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156, 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
Fuadi, H., Suryadarma, P., Syamsu, K., Surono, S., Setiyani, N. A., Ridhoha, S. M., … & Ramadhan, M. R. (2022). Isolation and selection of siderophore-producing bacteria from roots of Simadu pineapple (Ananas comosus) in Subang District, West Java. Menara Perkebunan, 90(2), 115–126. https://doi.org/10.22302/iribb.jur.mp.v90i2.502
Gupta, A., Rai, S., Bano, A., Sharma, S., Kumar, M., Binsuwaidan, R., … & Pathak, N. (2022). ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities. Plants, 11(24), 3419. https://doi.org/10.3390/plants11243419
Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59–75. https://doi.org/10.3390/bacteria3020005
Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., … & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ijms22179326
Hashem, A., Tabassum, B., & Abd_Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Hidri, R., Ben Mahmoud, O. M., Zorrig, W., Mahmoudi, H., Smaoui, A., Abdelly, C., … & Debez, A. (2022). Plant growth-promoting rhizobacteria alleviate high salinity impact on the halophyte Suaeda fruticosa by modulating antioxidant defense and soil biological activity. Frontiers in Plant Science, 13, 821475. https://doi.org/10.3389/fpls.2022.821475
Hu, J., Yang, T., Friman, V. P., Kowalchuk, G. A., Hautier, Y., Li, M., … & Jousset, A. (2021). Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proceedings of the Royal Society B: Biological Sciences, 288(1960), 20211396. https://doi.org/10.1098/rspb.2021.1396
Imhoff, J. F., Rahn, T., Künzel, S., Keller, A., & Neulinger, S. C. (2021). Osmotic adaptation and compatible solute biosynthesis of phototrophic bacteria as revealed from genome analyses. Microorganisms, 9(1), 46. https://doi.org/10.3390/microorganisms9010046
Ji, C., Ge, Y., Zhang, H., Zhang, Y., Xin, Z., Li, J., ... & Li, K. (2024). Interactions between halotolerant nitrogen-fixing bacteria and arbuscular mycorrhizal fungi under saline stress. Frontiers in Microbiology, 15, 1288865. https://doi.org/10.3389/fmicb.2024.1288865
Jiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., … & Chi, X. (2018). Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. 3 Biotech, 8(11), 461. https://doi.org/10.1007/s13205-018-1485-7
Kai, S., Matsuo, Y., Nakagawa, S., Kryukov, K., Matsukawa, S., Tanaka, H., … & Hirota, K. (2019). Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinIONTM nanopore sequencer. FEBS Open Bio, 9(3), 548–557. https://doi.org/10.1002/2211-5463.12590
Kang, S. M., Shahzad, R., Bilal, S., Khan, A. L., Park, Y. G., Lee, K. E., … & Lee, I. J. (2019). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 19(1), 80. https://doi.org/10.1186/s12866-019-1450-6
Kapadia, C., Patel, N., Rana, A., Vaidya, H., Alfarraj, S., Ansari, M. J., … & Sayyed, R. Z. (2022). Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Frontiers in Plant Science, 13, 946217. https://doi.org/10.3389/fpls.2022.946217
Karolinoerita, V., & Annisa, W. (2020). Salinisasi lahan dan permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91–99. https://doi.org/10.21082/jsdl.v14n2.2020.91-99
Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110
Khan, M. Y., Nadeem, S. M., Sohaib, M., Waqas, M. R., Alotaibi, F., Ali, L., … & Al-Barakah, F. N. I. (2022). Potential of plant growth-promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in Microbiology, 13, 958522. https://doi.org/10.3389/fmicb.2022.958522
Khumairah, F. H., Setiawati, M. R., Fitriatin, B. N., Simarmata, T., Alfaraj, S., Ansari, M. J., … & Najafi, S. (2022). Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Frontiers in Microbiology, 13, 905210. https://doi.org/10.3389/fmicb.2022.905210
Kulkova, I., Dobrzyński, J., Kowalczyk, P., Bełżecki, G., & Kramkowski, K. (2023). Plant growth promotion using Bacillus cereus. Journal of Molecular Sciences, 24(11), 9759. https://doi.org/10.3390/ijms24119759
Kumar, V., Raghuvanshi, N., Pandey, A. K., Kumar, A., Thoday-Kennedy, E., & Kant, S. (2023). Role of halotolerant plant growth-promoting rhizobacteria in mitigating salinity stress: Recent advances and possibilities. Agriculture, 13(1), 168. https://doi.org/10.3390/agriculture13010168
Kumawat, C., Kumar, A., Parshad, J., Sharma, S. S., Patra, A., Dogra, P., … & Kumawat, G. L. (2022). Microbial diversity and adaptation under salt-affected soils: A review. Sustainability, 14(15), 9280. https://doi.org/10.3390/su14159280
Lakshmanan, V., Ray, P., & Craven, K. D. (2017). Rhizosphere sampling protocols for microbiome (16S/18S/ITS rRNA) library preparation and enrichment for the isolation of drought tolerance-promoting microbes. Methods in Molecular Biology, 1631, 349–362. https://doi.org/10.1007/978-1-4939-7136-7_23
Latif, A., Ahmad, R., Ahmed, J., Mueen, H., Khan, S. A., Bibi, G., … & Hassan, A. (2024). Novel halotolerant PGPR strains alleviate salt stress by enhancing antioxidant activities and expression of selected genes leading to improved growth of Solanum lycopersicum. Scientia Horticulturae, 338, 113625. https://doi.org/10.1016/j.scienta.2024.113625
Lee, J., Kim, H. S., Jo, H. Y., & Kwon, M. J. (2021). Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS ONE, 16(2), e0246142. https://doi.org/10.1371/journal.pone.0246142
Li, H. P., Ma, H. B., & Zhang, J. L. (2025). Halo-tolerant plant growth-promoting bacteria-mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils. FEMS Microbiology Ecology, 101(5), fiaf037. https://doi.org/10.1093/femsec/fiaf037
Lihan, S., Benet, F., Husaini, A. A. S. A., Apun, K., Roslan, H. A., & Hassan, H. (2021). Isolation and identification of plant growth-promoting rhizobacteria from sago palm (Metroxylon sagu Rottb.). Tropical Life Sciences Research, 32(3), 39–51. https://doi.org/10.21315/tlsr2021.32.3.3
Liu, X., Chai, J., Zhang, Y., Zhang, C., Lei, Y., Li, Q., & Yao, T. (2022). Halotolerant rhizobacteria mitigate the effects of salinity stress on maize growth by secreting exopolysaccharides. Environmental and Experimental Botany, 204, 105098. https://doi.org/10.1016/j.envexpbot.2022.105098
Ma, D., Chen, H., Liu, D., Feng, C., Hua, Y., Gu, T., … & Zhang, K. (2024). Soil-derived cellulose-degrading bacteria: Screening, identification, the optimization of fermentation conditions, and their whole genome sequencing. Frontiers in Microbiology, 15, 1409697. https://doi.org/10.3389/fmicb.2024.1409697
Marasco, R., Fusi, M., Mosqueira, M., Booth, J. M., Rossi, F., Cardinale, M., … & Daffonchio, D. (2022). Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environmental Microbiomes, 17(1), 14. https://doi.org/10.1186/s40793-022-00407-3
Mishra, R. K., Sahu, P. K., Mishra, V., Jamal, H., Varma, A., & Tripathi, S. (2023). Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. Frontiers in Plant Science, 14, 1122347. https://doi.org/10.3389/fpls.2023.1122347
Mohanavelu, A., Raghavendra Naganna, S., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983. https://doi.org/10.3390/agriculture11100983
Mokrani, S., Nabti, E. H., & Cruz, C. (2022). Recent trends in microbial approaches for soil desalination. Applied Sciences, 12(7), 3586. https://doi.org/10.3390/app12073586
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. https://doi.org/10.1002/jobm.201800309
Oelviani, R., Adiyoga, W., Bakti, I. G. M. Y., Suhendrata, T., Malik, A., Chanifah, C., & Sihombing, Y. (2024). Climate change driving salinity: An overview of vulnerabilities, adaptations, and challenges for Indonesian agriculture. Weather, Climate, and Society, 16(1), 29–49. https://doi.org/10.1175/WCAS-D-23-0025.1
Oliva, G., Di Stasio, L., Vigliotta, G., Guarino, F., Cicatelli, A., & Castiglione, S. (2023). Exploring the potential of four novel halotolerant bacterial strains as plant-growth-promoting rhizobacteria (PGPR) under saline conditions. Applied Sciences, 13(7), 4320. https://doi.org/10.3390/app13074320
Oo, K. T., Win, T. T., Khai, A. A., & Fu, P. (2020). Isolation, screening and molecular characterization of multifunctional plant growth promoting rhizobacteria for a sustainable agriculture. American Journal of Plant Sciences, 11(06), 773–792. https://doi.org/10.4236/ajps.2020.116055
Orhan, F., Pucciarelli, S., Priyan Ramasamy, K., & Mahawar, L. (2023). Coping with salt stress-interaction of halotolerant bacteria in crop plants: A mini review. Frontiers in Microbiology, 14, 1077561. https://doi.org/10.3389/fmicb.2023.1077561
Orozco-Mosqueda, M. del C., Glick, B. R., & Santoyo, G. (2020). ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 235, 126439. https://doi.org/10.1016/j.micres.2020.126439
Patel, D., & Tandel, N. (2020). Screening and characterization of exopolysaccharide substance producing bacteria and its role in enhancement of plant growth. International Journal of Pharmacy and Biological Sciences (IJPBS), 10(2), 35–44. https://doi.org/10.21276/ijpbs.2020.10.2.35
Poole, P., Ramachandran, V., & Terpolilli, J. (2018). Rhizobia: From saprophytes to endosymbionts. Nature Reviews Microbiology, 16(5), 291–303. https://doi.org/10.1038/nrmicro.2017.171
Rehan, M., Al-Turki, A., Abdelmageed, A. H. A., Abdelhameid, N. M., & Omar, A. F. (2023). Performance of plant-growth-promoting rhizobacteria (PGPR) isolated from sandy soil on growth of tomato (Solanum lycopersicum L.). Plants, 12(8), 1588. https://doi.org/10.3390/plants12081588
Rodríguez, M., Torres, M., Blanco, L., Béjar, V., Sampedro, I., & Llamas, I. (2020). Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Scientific Reports, 10(1), 4121. https://doi.org/10.1038/s41598-020-61084-1
Sagar, A., Rai, S., Ilyas, N., Sayyed, R. Z., Al-Turki, A. I., El Enshasy, H. A., & Simarmata, T. (2022). Halotolerant rhizobacteria for salinity-stress mitigation: Diversity, mechanisms and molecular approaches. Sustainability, 14(1), 490. https://doi.org/10.3390/su14010490
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of The Total Environment, 764, 144164. https://doi.org/10.1016/j.scitotenv.2020.144164
Santoyo, G., Alberto Urtis-Flores, C., Damián Loeza-Lara, P., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475. https://doi.org/10.3390/biology10060475
Setiaji, H., Suryatmana, P., Fikri, F., & Fitriatin, B. N. (2025). Potassium-solubilizing bacteria isolated from saline soil and their potential as biofertilizer. Caraka Tani: Journal of Sustainable Agriculture, 40(1), 68–80. https://doi.org/10.20961/carakatani.v40i1.98106
Shabaan, M., Asghar, H. N., Zahir, Z. A., Zhang, X., Sardar, M. F., & Li, H. (2022). Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense. Frontiers in Microbiology, 13, 901865. https://doi.org/10.3389/fmicb.2022.901865
Shahid, M., Singh, U. B., Khan, M. S., Singh, P., Kumar, R., Singh, R. N., Kumar, A., & Singh, H. V. (2023). Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Frontiers in Microbiology, 14, 1132770. https://doi.org/10.3389/fmicb.2023.1132770
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, pp. 43–53. Springer International Publishing. https://doi.org/10.1007/978-3-319-96190-3_2
Simarmata, T., Setiawati, M. R., Fitriatin, B. N., Herdiyantoro, D., & Khumairah, F. H. (2023). Enhancing the ability of rice to adapt and grow under saline stress using selected halotolerant rhizobacterial nitrogen fixer. Open Agriculture, 8(1), 20220195. https://doi.org/10.1515/opag-2022-0195
Singh, P., Singh, R. K., Zhou, Y., Wang, J., Jiang, Y., Shen, N., Wang, Y., Yang, L., & Jiang, M. (2022). Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. Journal of Plant Interactions, 17(1), 220–238. https://doi.org/10.1080/17429145.2022.2029963
Sultana, S., Alam, S., & Karim, M. M. (2021). Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research, 4, 100150. https://doi.org/10.1016/j.jafr.2021.100150
Sunita, K., Mishra, I., Mishra, J., Prakash, J., & Arora, N. K. (2020). Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Frontiers in Microbiology, 11, 567768. https://doi.org/10.3389/fmicb.2020.567768
Tang, A., Haruna, A. O., Majid, N. M. A., & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3), 442. https://doi.org/10.3390/microorganisms8030442
Thakur, R., Dhar, H., Swarnkar, M. K., Soni, R., Sharma, K. C., Singh, A. K., … & Gulati, A. (2024). Understanding the molecular mechanism of PGPR strain Priestia megaterium from tea rhizosphere for stress alleviation and crop growth enhancement. Plant Stress, 12, 100494. https://doi.org/10.1016/j.stress.2024.100494
Tienda, S., Vida, C., Villar-Moreno, R., de Vicente, A., & Cazorla, F.M. (2024). Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiological Research, 285, 127761. https://doi.org/10.1016/j.micres.2024.127761
Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants, 11(22), 3065. https://doi.org/10.3390/plants11223065
Verma, H., Jindal, M., & Rather, S. A. (2021). Bacterial siderophores for enhanced plant growth. Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil (pp. 314–331). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-7998-7062-3.ch011
Wang, W., Xu, Y., Chen, T. X., Xing, L., Xu, K., Ji, D., … & Xie, C. (2019). Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions. Science of the Total Environment, 662, 168–179. https://doi.org/10.1016/j.scitotenv.2019.01.214
Wardell, G. E., Hynes, M. F., Young, P. J., & Harrison, E. (2022). Why are rhizobial symbiosis genes mobile? Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1842), 20200471. https://doi.org/10.1098/rstb.2020.0471
Widane, K. A., Widyasari, A., & Retnaningrum, E. (2022). Characterization and polyphasic identification of novel rhizobacteria strain isolated from sand dunes ecosystem. Biotropia, 29(1), 33–43. https://doi.org/10.11598/btb.2022.29.1.1584
Yan, N., Wang, W., Mi, T., Zhang, X., Li, X., & Du, G. (2024). Enhancing tomato growth and soil fertility under salinity stress using halotolerant plant growth-promoting rhizobacteria. Plant Stress, 14, 100638. https://doi.org/10.1016/j.stress.2024.100638
Zhang, C., Yu, Z., Zhang, M., Li, X., Wang, M., Li, L., Li, X., Ding, Z., & Tian, H. (2022). Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. Journal of Experimental Botany, 73(11), 3711–3725. https://doi.org/10.1093/jxb/erac074
Zverev, A. O., Kimeklis, A. K., Orlova, O. V., Lisina, T. O., Kichko, A. A., Pinaev, A. G., … & Andronov, E. E. (2024). Creation of cellulolytic communities of soil microorganisms—A search for optimal approaches. Microorganisms, 12(11), 2276. https://doi.org/10.3390/microorganisms12112276
Refbacks
- There are currently no refbacks.