Stunting In the Spotlight: Dynamic Panel Data Analysis
Abstract
This research examines the influence of the Human Development Index (HDI), early marriage, information and communication technology (ICT), and the Gender Inequality Index (GII) on the incidence of stunting in Indonesia using panel data from 34 provinces during the 2020-2023 period. The analysis was carried out using the Generalized Method of Moments (GMM). This study examines the determinants of stunting in children in Indonesia, with a focus on the Human Development Index, Early Marriage, Information and Communication Technology, and the Gender Inequality Index. Contrary to expectations, individual analysis of these variables failed to reveal significant relationships with stunting outcomes. However, simultaneous analysis of these factors revealed a collective impact of 18% on stunting variance, suggesting that a comprehensive approach incorporating multiple determinants may be necessary to effectively address this pervasive public health issue. The findings of this study have important implications for the development of targeted interventions aimed at reducing stunting in Indonesia. Diagnostic tests, including the Sargan test and the Arellano-Bond autocorrelation test, demonstrated the validity of the instruments and the absence of autocorrelation problems at the second level. This research provides important policy implications, such as increasing HDI, preventing early marriage, utilizing ICT, and empowering women to reduce the incidence of stunting in Indonesia.
Keywords
Full Text:
PDFReferences
Becker, G. S. (1964). Human capital: A theoretical and empirical analysis, with special reference to education. University of Chicago Press.
Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143. doi: 10.1016/S0304-4076(98)00009-4
De Onis, M., Branca, F., & Chumlea, W. C. (2019). Stunting in childhood: Global estimates and implications. Bulletin of the World Health Organization, 97(10), 761–771. doi: 10.2471/BLT.18.221414
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. doi: 10.2307/2982476
Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression. Biometrika, 37(3-4), 409-428. doi: 10.2307/2332079
Goli, S., Doshi, R., & Perianayagam, A. (2019). Gender inequality and health outcomes: Evidence from India. Social Science & Medicine, 232, 302–311. doi: 10.1016/j.socscimed.2019.04.024
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029-1054. doi: 10.2307/1912774 Hidayat, B., Thabrany, H., & Damayanti, R. (2019). The impact of community development on health outcomes in Indonesia. Social Science & Medicine, 232, 292–301. doi: 10.1016/j.socscimed.2019.02.024
Hossain, M. Z., Islam, M. S., & Rahman, M. M. (2020). Social determinants of stunting among children under five years in Bangladesh. BMC Public Health, 20(1), 1-11. doi: 10.1186/s12889-020-08815-6
Kabeer, N. (2019). Gender and development: Rethinking modernization and gender inequality. World Development, 123, 102244. doi: 10.1016/j.worlddev.2019.02.012
Kumar, N., Kumar, J., & Adhikari, T. (2020). Role of information and communication technology in healthcare: A systematic review. International Journal of Medical Informatics, 143, 102144. doi: 10.1016/j.ijmedinf.2020.102144
Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2005). Applied linear regression models Marmot, M. (2017). Social determinants of health inequalities. The Lancet, 390(10106), 1727-1736. doi: 10.1016/j.socscimed.2017.03.021
Nguyen, P. H., Tran, L. M., & Nguyen, T. T. (2020). Human capital and stunting in children: Evidence from Vietnam. Social Science & Medicine, 262, 112923. doi: 10.1016/j.socscimed.2020.112923
Ratnaningsih, M., Utami, R., & Waksi, F. (2020). Status Kesehatan Remaja Perempuan yang Mengalami Perkawinan Anak. Jurnal Kesehatan Reproduksi, 7(1), 15. doi: 10.22146/jkr.54211
Riskesdas. (2018). Riset Kesehatan Dasar 2018. Jakarta: Kementerian Kesehatan Republik Indonesia.
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. doi: 10.1016/j.ijhcs.2012.02.005
DOI: https://doi.org/10.20961/bfde.v5i1.101890
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bulletin of Fintech and Digital Economy