Dampak Defisiensi dan Toksisitas Hara Magnesium terhadap Karakteristik Agronomi dan Fisiologi Padi Gogo

Aisar Novita, Koko Tampubolon, Hilda Julia, Fitria Fitria, Arie Hapsani Hasan Basri

Abstract

Deficiency or excess magnesium in the soil can affect the vegetative and generative growth of plants. This study aimed to identify the effect of magnesium deficiency and toxicity on the agronomic and physiological characteristics of upland rice. The study was conducted on farmers' land, Medan Selayang Subdistrict, Medan City, from June 2021 to January 2022. This study used a non-factorial randomized block design, namely the application of 27% MgO fertilizer based on the deficiency rates, (0; 1/2; 1/4; 1/8; 1/16; 1/32 times), while the toxicity levels include 0; 2; 4; 8; 16; 32-times within three replicates. The results showed that Mg deficiency significantly inhibited the growth of plant height; leaf area; total chlorophyll SPAD; panicle length; shoot dry weight; and yield.ha-1 were 20.68; 26.77; 19.23; 22.60; 44.20; and 50.72%, respectively. The Mg toxicity significantly inhibited the growth of the leaf area, the number of tillers, number of productive tillers, shoot dry weight, and root dry weight were 14.24; 32.15; 42.87; 34.07; and 44.31%, respectively. The critical limit (BK50) for upland rice caused by deficiency and toxicity of Mg were 0.032 and 1125.189 g/10 kg of the soil, respectively.

Keywords

Critical limit; Fertilizer; Growth; Yield

Full Text:

PDF

References

Balai Penelitian Tanah. (2005). Petunjuk teknis analisis kimia tanah, tanaman, air, dan pupuk. Jakarta(ID): Kementerian Pertanian. p.143.

Brohi A, Karaman MR, Topbaş MT, Aktaş, ASavaşli E. 2000. Effect of potassium and magnesium fertilization on yield and nutrient content of rice crop grown on artificial siltation soil. Turkish JAgricForest. 24(4), 429-436. https://journals.tubitak.gov.tr/agriculture/abstract.htm?id=4127.

Dechen AR, Carmello QA. C, Monteiro F A, Nogueirol RC. 2015. Role of magnesium in food production: an overview. CropPasture Sci. 66(12):1213-1218. https://doi.org/10.1071/CP15094.

Efendi R, Musa Y, Bdr, MF, Rahim MD, Azrai M, Pabendon M. 2015. Seleksi jagung inbrida dengan marka molekuler dan toleransinya terhadap kekeringan dan nitrogen rendah. JPenel Pertan Tan Pangan, 34(1), 43-53. http://dx.doi.org/10.21082/jpptp.v34n1.2015.p43-53.

Fageria NK. 1998. Otimização da eficiência nutricional na produção das culturas. Revista Brasileira de Engenharia Agrícola e Ambiental. 2(1):6-16. http://dx.doi.org/10.1590/1807-1929/agriambi.v02n01p6-16.

Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M. 2016. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plantar 38(6):145. https://doi.org/10.1007/s11738-016-2165-z.

Gomez KA, GomezA A. 1976. Statistical procedures for agricultural research with emphasis on rice. Los Banos (PH): International Rice Research Institute, 294p.

Gransee, A., & Führs, H. (2013). Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368(1-2):5-21. https://doi.org/10.1007/s11104-012-1567-y.

Harris KD, Vanajah T, Puvanitha S. 2018. Effect of foliar application of Boron and Magnesium on growth and yield of green chilli (Capsicum annum L.). Agrieast. 12(1): 26-33. http://www.digital.lib.esn.ac.lk/handle/123456789/3734.

Hauer-Jákli M, Tränkner M. 2019. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research. Front Plant Sci. 10:766. https://dx.doi.org/10.3389%2Ffpls.2019.00766.

Hermans C, Verbruggen N. 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Experim Bot. 56(418):2153-2161. https://doi.org/10.1093/jxb/eri215.

Huang X, Muneer MA, Li J, Hou W, Ma C, Jiao J, Cai, Y, Chen X, Wu L, Zheng C. 2021. Integrated nutrient management significantly improves pomelo (Citrus grandis) root growth and nutrients uptake under acidic soil of Southern China. Agronomy 11:1231.https://doi.org/10.3390/agronomy11061231.

Kobayashi H, Masaoka Y, Sato S. 2005. Effects of excess magnesium on the growth and mineral content of rice and Echinochloa. Plant Product Sci. 8(1): 38-43. https://doi.org/10.1626/pps.8.38.

Kobayashi NI, Saito T, Iwata N, Ohmae Y, Iwata R, Tanoi K, Nakanishi TM. 2013. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol Plant 148(4:490-501. https://doi.org/10.1111/ppl.12003.

Liu Z, Huang Q, Liu, X., Li, P., Naseer, M. R., Che, Y., Dai Y, Luo X, Liu D, Song L, Jiang B, Peng X, Yu C. 2021. Magnesium fertilization affected rice yields in magnesium sufficient Soil in Heilongjiang Province, Northeast China. Front Plant Sci. 12:645806. https://doi.org/10.3389/fpls.2021.645806.

Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Curr Opinion Plant Biol 12(3), 250-258. https://doi.org/10.1016/j.pbi.2009.04.003.

Marschner, H. (2012). Mineral nutrition of higher plants, third ed. London (UK): Academic Press.

Neuhaus, C., Geilfus, C. M., & Mühling, K. H. (2014). Increasing root and leaf growth and yield in Mg‐deficient faba beans (Vicia faba) by MgSO4 foliar fertilization. J Plant Nutr Soil Sci 177(5):741-747. https://doi.org/10.1002/jpln.201300127.

Niu Y, Chai R, Liu L, Jin G, Liu M, Tang C, Zhang Y. 2014a. Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ. 37(12):2795-2813. https://doi.org/10.1111/pce.12362.

Niu Y, Jin G, Zhang YS. 2014b. Root development under control of magnesium availability. Plant Signal Behav 9(9):e29720. https://doi.org/10.4161/psb.29720.

Peng YY, Liao LL, Liu S, Nie MM, Li J, Zhang LD, Ma J. F, Chen ZC. 2019. Magnesium deficiency triggers SGR–mediated chlorophyll degradation for magnesium remobilization. Plant Physiol. 181(1):262-275. https://doi.org/10.1104/pp.19.00610.

Pusat Data dan Sistem Informasi Pertanian. (2021). Buletin konsumsi pangan tahun 2021. Jakarta(ID): Kementerian Pertanian. p.106.

Ritung S, Suryani E, Subardja D, Sukarman, Nugroho K, Suparto, Hikmatullah, Mulyani A, Tafakresnanto C, Sulaeman Y, Subandiono RE, Wahyunto, Ponidi, Prasodjo N, Suryana U, Hidayat H, Priyono A, Supriatna W 2015. Sumber daya lahan pertanian Indonesia: Luas, penyebaran, dan potensi ketersediaan. Jakarta (ID): Indonesian Agency for Agricultural Research and Development (IAARD) Press

Selvaraj V, Sankar J. 2010. Characterisation of magnesium toxicity, its influence on amino acid synthesis pathway and biochemical parameters of tea. Res J Phytochem 4(2), 67-77.

SERAS. 1994. Standard operating procedures: plant biomass determination. Sci Engin Respon Anal Serv. 1-5 p.

Suhartini T. 2010. Pertumbuhan akar duapuluh genotip padi gogo pada kahatfosfor dan cekaman aluminium. Berita Biologi 10(3):375-383. http://dx.doi.org/10.14203/beritabiologi.v10i3.753.

Verbruggen, N., & Hermans, C. (2013). Physiological and molecular responses to magnesium nutritional imbalance in plants. PlantSoil 368(1):87-99. https://doi.org/10.1007/s11104-013-1589-0.

Yullianida., Hermanasari, R., Lestari, A. P., & Hairmansis, A. (2019). Seleksi padi gogo di lahan kering masam. J Ilmu Pertann Tirtayasa 1(1):79-86.

Refbacks

  • There are currently no refbacks.