Aplikasi Lubang Resapan Biopori Berkompos terhadap Peningkatan Fosfor pada Agroekosistem Kebun Kopi Robusta

Soemarno Soemarno, Yusuf Mahardika Nurin, Dinda Mahartian Yunita, Atiqah Aulia Hanuf

Abstract

Sloping topography, clay textures and improper fertilizer application create a high risk of surface runoff and nutrient loss. Phosphorus occurs as an important nutrient in coffee beans. The objective of this research is to analyze the effects of biopore infiltration hole with compost (BIHC) on the total and available phosphorus in robusta coffee in Bangelan plantation, Malang. A complete randomized block design with 4 replications was applied and the treatments consisted of control and BIHC. The BIHC process involved biopore hole depth of 30 and 60 cm for the goat manure and coffee pulp compost, respectively. Several parameters were also observed, including pH, total and available phosphorus as well as soil organic carbon (SOC) between 0-20, 20-40 and 40-60 cm in soil depth. Subsequently, the analysis of variance (ANOVA) and Duncan's Multiple Range Test (DMRT) were used to comprehend the data. The results showed the ability of BIHC to significantly increase the pH, SOC and total-P, compared to the control with less available-P. These total-P improvements up to 103.27, 108.73 and 132.09% were reported at soil depths between 0-20, 20-40 and 40-60 cm, respectively, while available-P were possibly enhanced up to 77.59, 28.27 and 151.99% at corresponding depth ranges.

Keywords

Biopore Depth; Coffea canephora; Coffee Pulp Compost; Goat Manure Compost

Full Text:

PDF(ID)

References

Afandi FN, Siswanto B, Nuraini Y. 2015. Pengaruh pemberian berbagai jenis bahan organik terhadap tifat kimia tanah pada pertumbuhan dan produksi tanaman ubi jalar di entisol Ngrangkah Pawon, Kediri. J Tanah Sumberdaya Lahan. 2(2):237–244.

Agbenin JO. 2003. Extractable iron and aluminum effects on phosphate sorption in a savanna alfisol. Soil Sci Soc Am J. 67(2):589–595. https://dx.doi.org/10.2136/sssaj2003.5890.

Agbenin JO, Igbokwe SO. 2006. Effect of soil-dung manure incubation on the solubility and retention of applied phosphate by a weathered tropical semi-arid soil. Geoderma. 133(3-4):191–203. https://dx.doi.org/10.1016/j.geoderma.2005.07.006.

Ano AO, Ubochi CI. 2007. Neutralization of soil acidity by animal manures: mechanism of reaction. Afr J Biotechnol. 6(4):364–368.

Arafat Y, Wei X, Jiang Y, Chen T, Saqib HSA, Lin S, Lin W. 2017. Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems. Int J Mol Sci. 18(8):1–16. https://dx.doi.org/10.3390/ijms18081727.

[BPS] Badan Pusat Statistik. 2019. Indonesian coffee statistics. In: Sub Direktorat Statistik Tanaman Perkebunan, editor. Jakarta (ID): BPS-Statistics Indonesia. 85 p.

Boateng KGA, Ayisi CL. 2015. The effect of organic manures on soil fertility and microbial biomass carbon, nitrogen and phosphorus under maize-cowpea intercropping system. Discourse J Agric Food Sci. 3(4):65–77.

Chen X, Wang L, Niu Z, Zhang M, Li C, Li J. 2020. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric For Meteorol. 282–283(December 2019):107867. https://dx.doi.org/10.1016/j.agrformet.2019.107867.

Clunes J, Dörner J, Pinochet D. 2021. How does the functionality of the pore system affects inorganic nitrogen storage in volcanic ash soils ? Soil Tillage Res. 205:104802. https://dx.doi.org/10.1016/j.still.2020.104802.

Dobermann A, George T, Thevs N. 2002. Phosphorus fertilizer effects on soil phosphorus pools in acid upland soils. Soil Sci Soc Am J. 66(2):652–660. https://dx.doi.org/10.2136/sssaj2002.6520.

Estrada-bonilla GA, Durrer A, Cardoso EJBN. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl Soil Ecol. 157:103760. https://doi.org/10.1016/j.apsoil.2020.103760.

Fekadu E, Kibret K, Bedadi B, Melese A, Yitaferu B. 2018. Organic and inorganic amendments on soil chemical properties at different period of incubation of acidic soil. Eurasian J Soil Sci. 7(3):273–283. https://dx.doi.org/10.18393/ejss.435095.

Gichangi EM, Mnkeni PNS. 2009. Effects of goat manure and lime addition on phosphate sorption by two soils from the transkei region, South Africa. Commun Soil Sci Plant Anal. 40(21-22):3335–3347. https://dx.doi.org/10.1080/00103620903325943.

Gusnidar G, Hakim N, Prasetyo TB. 2010. Inkubasi titonia pada tanah sawah terhadap asam-asam organik. J Solum. 7(1):7. https://dx.doi.org/10.25077/js.7.1.7-18.2010.

Hamed MH, M.A. Desoky. AM, Ghallab. MA, M.A. F. 2014. Effect of incubation periods and some organic materials on phosphorus forms in calcareous soils. Int J Technol Enhanc Emerg Eng Res. 2(6):2347–4289.

Hariyono D. 2018. The effect planting hole size and manure on vegetative growth of golden teak (Tectona grandis L.). J Degrad Min L Manag. 5(3):1293–1297. https://dx.doi.org/10.15243/jdmlm.2018.053.1293.

Hastuti PB, Rohmiyati SM. 2020. Application of empty fruit bunches compost and types of p fertilizer on the growth and phosphorus uptake in oil palm seedlings. Agrotechnology Res J. 4(2):59–64. https://dx.doi.org/10.20961/agrotechresj.v4i2.40784.

Haynes RJ, Mokolobate MS. 2001. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosystems. 59(1):47–63. https://dx.doi.org/10.1023/A:1009823600950.

Herencia JF, Maqueda C. 2016. Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. J Agric Sci. 154(8):1343–1361. https://dx.doi.org/10.1017/S0021859615001136.

Huang S, Ma Y, Bao D, Guo D, Zhang S. 2011. Manures behave similar to superphosphate in phosphorus accumulation in long-term field soils. Int J Plant Prod. 5(2):135–146. https://dx.doi.org/10.22069/ijpp.2012.727.

Ifansyah H. 2014. Soil pH and solubility of aluminum, iron, and phosphorus in ultisols: the roles of humic acid. J Trop Soils. 18(3):203–208.

Kannan P, Paramasivan M, Marimuthu S, Swaminathan C, Bose J. 2021. Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH , moisture content , microbial growth and P availability. Agric Ecosyst Environ. 308:107258. https://doi.org/10.1016/j.agee.2020.107258.

Kooch Y, Ehsani S, Akbarinia M. 2020. Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil Tillage Res. 200:104621. https://doi.org/10.1016/j.still.2020.104621.

Kusumandari A. 2014. Soil erodibility of several types of green open space areas in Yogyakarta city, Indonesia. Procedia Environ Sci. 20:732–736. https://dx.doi.org/10.1016/j.proenv.2014.03.087.

Landl M, Schnepf A, Vanderborght J, Uteau D, Athmann M, Kautz T, Perkons U, Vereecken H. 2018. The impact of biopores on root growth and root water uptake under different soil physical conditions – a simulation study. Geophys Res Abstr. 20:4359. https://dx.doi.org/10.2136/vzj2018.11.0196.

Li Y, Li Z, Arafat Y, Lin Weiwei, Jiang Y, Weng B, Lin Wenxiong. 2017. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. Eur J Soil Biol. 81:48–54. https://dx.doi.org/10.1016/j.ejsobi.2017.06.008.

Li YC, Li Z, Li ZW, Jiang YH, Weng BQ, Lin WX. 2016. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J Appl Microbiol. 121(3):787–799. https://dx.doi.org/10.1111/jam.13225.

Lin Weiwei, Lin M, Zhou H, Wu H, Li Z, Lin Wenxiong. 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One. 14(5):1–16. https://dx.doi.org/10.1371/journal.pone.0217018.

Nanzyo M, Shoji S, Dahlgren R. 1993. Chapter 7 physical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren R, editors. Developments in soil science. Amsterdam (NL): Elsevier. 21:189–207. https://dx.doi.org/10.1016/S0166-2481(08)70268-X.

Opala PA, Okalebo JR, Othieno CO, Kisinyo P. 2010. Effect of organic and inorganic phosphorus sources on maize yields in an acid soil in western Kenya. Nutr Cycl Agroecosystems. 86(3):317–329. https://dx.doi.org/10.1007/s10705-009-9294-3.

Pagliari PH. 2014. Chapter 8: Variety and solubility of phosphorus forms in animal manure and their effects on soil test phosphorus. In: He Z, Zhang H, editors. Applied manure and nutrient chemistry for sustainable agriculture and environment. p. 142–161. https://doi.org/10.1007/978-94-017-8807-6_8.

Peña-Méndez EM, Havel J, Patočka J. 2005. Humic substance - Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J Appl Biomed. 3(1):13–24. https://dx.doi.org/10.32725/jab.2005.002.

Permatasari L. 2015. Biopore infiltration hole: “one day for biopore” as an alternative prevent flood. Int J Adv Sci Eng Technol. 3(2):6–9.

Qin R, Su C, Mo T, Liao L, Zhu F, Chen Y, Chen M. 2021. Effect of excess sludge and food waste feeding ratio on the nutrient fractions, and bacterial and fungal community during aerobic. Bioresour Technol. 320(Part A):124339. https://doi.org/10.1016/j.biortech.2020.124339.

Reck A, Jackisch C, Hohenbrink TL, Schröder B, Zangerlé A, Schaik L. 2018. Impact of temporal macropore dynamics on infiltration: field experiments and model simulations. Vadose Zo J. 17(1):170147. https://dx.doi.org/10.2136/vzj2017.08.0147.

Saleque MA, Naher UA, Islam A, Pathan ABMBU, Hossain ATMS, Meisner CA. 2004. Inorganic and Organic Phosphorus Fertilizer Effects on the Phosphorus Fractionation in Wetland Rice Soils. Soil Sci Soc Am J. 68(5):1635–1644. https://dx.doi.org/10.2136/sssaj2004.1635.

Santos M, Rocha F, Silva D, Ferraz AC, Andrade JT, Marjorie K, Herrera S, Lima WG. 2018. Triazole ‑ chalcones : lack of antibacterial , anti ‑ candida , and anti ‑ dengue virus activities. J Pharm Negat Results. 9(1):39–43.

Shitindi M., Mrema JP. 2019. Composting coffee pulp with Minjingu phosphate rock improves phosphorus availability for tomato uptake. Afr J Agric Res. 14(25):1051–1057. https://dx.doi.org/10.5897/ajar2018.13089.

Umasugi B, Prijono S, Soemarno, Ariffin. 2021. Improvement of soil moisture storage in clove plantation land using biopore technology and organic material litters. J Degrad Min L Manag. 8(2):2601–2610. https://dx.doi.org/10.15243/jdmlm.2021.082.2601.

Wang Q, Shaheen SM, Jiang Y, Li R, Slaný M. 2021. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J Hazard Mater. 403. https://dx.doi.org/10.1016/j.jhazmat.2020.123628.

Wei Y, Zhao Yue, Fan Y, Lu Q, Li M, Wei Q, Zhao Yi, Cao Z, Wei Z. 2017. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting. Bioresour Technol. 241:134–141. http://dx.doi.org/10.1016/j.biortech.2017.05.099.

Widiya M, Krisnawati Y. 2017. Perbandingan efektifitas laju resapan air berdasarkan variasi dan umur sampah. In: Herlinda S, Nirmala K, Novra A, Sahari B, Suwandi, Tanbiyaskur, Puspitahati, Syafutri MI, Sasanti AD, editors. Pengembangan ilmu dan teknologi pertanian bersama petani lokal untuk optimalisasi Lahan Suboptimal. Prosiding Seminar Nasional Lahan Suboptimal Tahun 2017; 19-20 Oktober 2017; Palembang, ID. Palembang(ID): Unsri Press. p. 489–496.

Refbacks

  • There are currently no refbacks.