Produksi Kedelai pada Tumpang Sari dengan Tithonia diversifolia

Putri Mustika Sari, Adriansyah Yoesoep, Lisdayani Lisdayani


Considering that soybeans are a food ingredient, it is necessary to control insect pests that are appropriate and environmentally friendly to increase soybean production, for example, through an intercropping pattern using flowering plants that can attract beneficial insects. This study aimed to increase soybean production by increasing the number of natural enemies planted through an intercropping soybean pattern with Titonia (Tithonia diversifolia). This research was conducted from April - August 2020 at Aras Kabu Village Deli Serdang District; the method used was direct observation to the experimental field of soybean – Titonia intercropping made with 5 Mapping spacing treatments. Harvesting insects using sweep net and for production is counted from soybean pods. The results showed that the soybean-Titonia intercropping had an effect on soybean production, the highest number of seeds was in the treatment of 50 cm spacing between plants (T4) of 57.33, and the highest weight of 100 seeds was in the treatment of 50 cm spacing between plants (T4) treatment of 15.22. The insect orders found in the area of Titonia-soybean intercropping plantations are Hemiptera, Coleoptera, Diptera, Hymenoptera, Lepidoptera, where many predatory insects, parasitoids, and pollinators are found. Judging from the content of secondary metabolites of Titonia, namely alkaloids, tannins, and flavonoids, the results of Titonia plants, including flower, stems, and leaves, can be used to extract pesticides in controlling insect pests.


Legume; Parasitoid; Predator

Full Text:



Akpheokhai IL, Fawole B. 2012. Evaluation of Some Plant Extracts for the Management of Meloidogyne incognita on Soybean ( Glycine max ). 8(4):429–435. doi:10.5829/idosi.wjas.2012.8.4.1658.

Ayesa SA, Chukwuka KS, Odeyemi OO. 2018. Tolerance of Tithonia diversifolia and Chromolaena odorata in heavy metal simulated-polluted soils and three selected dumpsites. Toxicol Reports. 5(October):1134–1139. doi:10.1016/j.toxrep.2018.11.007.

Ayu S, Lestari D. 2016. Pemanfaatan Paitan (Tithonia diversifolia) sebagai Pupuk Organik pada Tanaman Kedelai. Iptek Tanam Pangan. 11(1):49–56.

Badan Pusat Statistik. 2018. Statistik Pertanian. Susanti AA, Waryanto B, editors. Jakarta: Pusat Data dan Sistem Informasi Pertanian, Kementerian Pertanian Republik Indonesia.

Bagnarello G, Hilje L, Bagnarello V, Cartín V, Calvo M. 2009. Actividad fagodisuasiva de las plantas tithonia diversifolia y montanoa hibiscifolia (asteraceae) sobre adultos del insecto plaga bemisia tabaci (homoptera: Aleyrodidae). Rev Biol Trop. 57(4):1201–1215. doi:10.15517/rbt.v57i4.5457.

Beaumont LJ, Esperón-Rodríguez M, Nipperess DA, Wauchope-Drumm M, Baumgartner JB. 2019. Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biol Conserv. 237(July):230–237. doi:10.1016/j.biocon.2019.07.013.

Cheriere T, Lorin M, Corre-Hellou G. 2020. Species choice and spatial arrangement in soybean-based intercropping: Levers that drive yield and weed control. F Crop Res. 256(March):107923. doi:10.1016/j.fcr.2020.107923.

Chmura D, Adamski P, Denisiuk Z. 2013. How do plant communities and flower visitors relate? A case study of semi-natural xerothermic grasslands. Acta Soc Bot Pol. 82(2):99–105. doi:10.5586/asbp.2013.015.

Chukwuka KS, Ogunyemi S, Fawole I. 2007. Ecological distribution of Tithonia diversifolia (Hemsl). A. Gray-A new exotic weed in Nigeria. J Biol Sci. 7(5):709–719. doi:10.3923/jbs.2007.709.719.

Desyrakhmawati L, Melati M, , S, Hartatik W. 2015. Pertumbuhan Tithonia diversifolia dengan Dosis Pupuk Kandang dan Jarak Tanam yang Berbeda. J Agron Indones (Indonesian J Agron. 43(1):72–80. doi:10.24831/jai.v43i1.9595.

Essien EE, Ascrizzi R, Flamini G. 2018. Characterization of volatile metabolites of Tithonia diversifolia ( Hemsley ) A . gray leaves and flowers. Am J Essent Oils Nat Prod. 6(2):19–21.

Grdiša M, Gršić K. 2013. Botanical insecticides in plant protection. Agric Conspec Sci. 78(2):85–93.

Green PWC, Belmain SR, Ndakidemi PA, Farrell IW, Stevenson PC. 2017. Insecticidal activity of Tithonia diversifolia and Vernonia amygdalina. Ind Crops Prod. 110(March):15–21. doi:10.1016/j.indcrop.2017.08.021.

Greer AW, Van Wyk JA, Hamie JC, Byaruhanga C, Kenyon F. 2020. Refugia-Based Strategies for Parasite Control in Livestock. Vet Clin North Am - Food Anim Pract. 36(1):31–43. doi:10.1016/j.cvfa.2019.11.003.

Haight J, Hammill E. 2020. Protected areas as potential refugia for biodiversity under climatic change. Biol Conserv. 241(May 2019):1–11. doi:10.1016/j.biocon.2019.108258.

Hartoyo APP, Siregar IZ, Supriyanto, Prasetyo LB, Thelaide I. 2016. Biodiversity, Carbon Stocks and Community Monitoring in Traditional Agroforestry Practices: Preliminary Results from Two Investigated Villages in Berau, East Kalimantan. Procedia Environ Sci. 33:376–385. doi:10.1016/j.proenv.2016.03.088.

Heimoana V, Pilkington LJ, Raman A, Mitchell A, Nicol HI, Johnson AC, Gurr GM. 2017. Integrating spatially explicit molecular and ecological methods to explore the significance of non-crop vegetation to predators of brassica pests. Agric Ecosyst Environ. 239:12–19. doi:10.1016/j.agee.2017.01.008.

Hikal WM, Baeshen RS, Said-Al Ahl HAH. 2017. Botanical insecticide as simple extractives for pest control. Cogent Biol. 3(1). doi:10.1080/23312025.2017.1404274.

Jama B, Palm CA, Buresh RJ, Niang A, Gachengo C, Nziguheba G, Amadalo B. 2000. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: A review. Agrofor Syst. 49(2):201–221. doi:10.1023/A:1006339025728.

Jorge Mustonen P, Oelbermann M, Kass DCL. 2012. Using Tithonia diversifolia (Hemsl.) Gray in a Short Fallow System to Increase Soil Phosphorus Availability on a Costa Rican Andosol. J Agric Sci. 4(2):91–100. doi:10.5539/jas.v4n2p91.

Lawal OA, Kasali AA, Opoku AR, Oyedeji AO. 2012. Volatile constituents of the flowers, leaves, stems and roots of Tithonia diversifolia (Hemsely) A. Gray. J Essent Oil-Bearing Plants. 15(5):816–821. doi:10.1080/0972060X.2012.10644125.

Luo D, Silva DP, De Marco Júnior P, Pimenta M, Caldas MM. 2020. Model approaches to estimate spatial distribution of bee species richness and soybean production in the Brazilian Cerrado during 2000 to 2015. Sci Total Environ. 737:139674. doi:10.1016/j.scitotenv.2020.139674.

Mustonen PSJ, Oelbermann M, Kass DCL. 2014. Response of the common bean (Phaseolus vulgaris L.) to Tithonia diversifolia (Hamsl.) Gray biomass retention or removal in a slash and mulch agroforestry system. Agrofor Syst. 88(1):1–10. doi:10.1007/s10457-013-9650-9.

Nakayama A, Asami K. 2020. Mechanism of maintaining cobble-bar vegetation and the geomorphic conditions for existence of refugia during large floods. J Hydro-Environment Res. 30(March):91–99. doi:10.1016/j.jher.2020.03.003.

Nicholls CI, Altieri MA. 2013. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev. 33(2):257–274. doi:10.1007/s13593-012-0092-y.

Pretti IR, Luz AC da, Jamal CM, Batitucci M do CP. 2018. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Ind Crops Prod. 121(January):241–249. doi:10.1016/j.indcrop.2018.04.080.

Rahayu SK, Supriyadi S, Supriyono S, Wijayanti R, Putri RBA, Putri RBA. 2018. Keanekaragaman serangga pengunjung bunga pada tanaman tumpang sari kedelai dengan tanaman orok-orok (Crotalaria juncea). J Entomol Indones. 15(1):23. doi:10.5994/jei.15.1.23.

Raseduzzaman M, Jensen ES. 2017. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur J Agron. 91(September):25–33. doi:10.1016/j.eja.2017.09.009.

Reckling M, Bergkvist G, Watson CA, Stoddard FL, Bachinger J. 2020. Re-designing organic grain legume cropping systems using systems agronomy. Eur J Agron. 112(December 2018):125951. doi:10.1016/j.eja.2019.125951.

Soverda N, Alia Y. 2016. Sistem Pertanaman Tumpangsari Antara Beberapa Genotip Kedelai (Glycine max (L) Merill) Dengan Jagung Manis (Zea mays Var. Saccharatasturt) Yang Ditanam Secara Multi Rows. J Agrium Unimal. 13(2):27–34.

Yuniar N, Haneda NF. 2015. Keanekaragaman semut (Hymenoptera: Formicidae) pada empat tipe ekosistem yang berbeda di Jambi. In: Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. Vol. 1 (7). p. 1582–1585.

Zhang R, Mu Y, Li X, Li S, Sang P, Wang X, Wu H, Xu N. 2020. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Sci Total Environ. 740:139810. doi:10.1016/j.scitotenv.2020.139810.


  • There are currently no refbacks.