Physiological and Yield of Soybean Under Kayu Putih (Melaleuca cajuputi subsp. cumingiana) Stands with N, P, and K Fertilization on Lithic Haplustert

Roni Ismoyojati, Tohari Tohari, Priyono Suryanto, Fajrin Pramana Putra


Fertilization of N, P, and K on soybean planted under Kayu Putih stands to serve to increase soil nutrients. Lithic Haplustert is a subgroup of Vertisol with a relatively low fertility and organic matter with a heavy clay texture. This research aims to determine the response of soybean to the application of N, P, and K fertilizers on the Lithic Haplustert in physiology and yield. This research was conducted from February to May 2015 in the Srikoyo hamlet, Menggoran village, Playen district, Gunungkidul regency, Yogyakarta. The experimental design is split-split plot with three levels of fertilization of N (0, 25, 50 kg urea ha-1), P (0, 150, 300 kg SP-36 ha-1), and K (0, 75, 150 kg KCl ha-1). The results showed that the application of 50 kg urea ha-1 and 300 kg SP-36 ha-1 can increase the leaf area and photosynthesis rate. Dosage 150 kg KCl ha-1 fertilizer increased the concentration of N, P, and K in the plant tissues significantly.


Soybean; Fertilizer; Photosynthetic rate; Vertisol

Full Text:



Ao X, Guo X, Zhu Q, Zhang H, Wang H, Ma Z, Han X, Zhao M, Xie F. 2014. Effect of Phosphorus Fertilization to P Uptake and Dry Matter Accumulation in Soybean with Different P Efficiencies. J Integr Agric. 13(2):326–334. doi:10.1016/S2095-3119(13)60390-1.

Araújo AP, Del Pin B, Teixeira MG. 2012. Nitrogen and phosphorus in senescent leaves of field-grown common bean cultivars and their contribution to crop nutrient budget. F Crop Res. 127:35–43. doi:10.1016/j.fcr.2011.11.009.

Atkins CA, Smith PMC. 2007. Translocation in Legumes: Assimilates, Nutrients, and Signaling Molecules. Plant Physiol. 144(2):550–561. doi:10.1104/pp.107.098046.

Cuvaca I, Lambert D, Walker F, Marake M, Eash N. 2015. Economically Optimal N Fertilizer Rates for Maize Produced on Vertisol and Inceptisol Soils under No-Till Management: A Case Study in Maphutseng, Lesotho. Int J Plant Soil Sci. 8(2):1–12. doi:10.9734/IJPSS/2015/19371.

Day L. 2013. Proteins from land plants – Potential resources for human nutrition and food security. Trends Food Sci Technol. 32(1):25–42. doi:10.1016/j.tifs.2013.05.005.

Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Djagbletey G, Hien F, Compaore H, et al. 2010. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33(6):959–980. doi:10.1111/j.1365-3040.2010.02119.x.

Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA. 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. In: Proceedings of the National Academy of Sciences. Vol. 107. p. 16732–16737.

Janagard MS, Raei Y, Gasemi-Golezani K, Aliasgarzad N. 2013. Soybean response to biological and chemical fertilizers. Int J Agric Crop Sci. 5(3):261–266.

Jati RI, Tohari T, Suryanto P. 2017. The Optimum Dose of Nitrogen, Phosporus, and Potassium to Improve Soybean (Glycine max (L) Merr) Productivity on Kayu Putih (Melaleuca cajuputi) Stands. Ilmu Pertan (Agricultural Sci. 2(2):56–63. doi:10.22146/ipas.17991.

Kanai S, Moghaieb RE, El-Shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 180(2):368–374. doi:10.1016/j.plantsci.2010.10.011.

Khajudparn P, Piyada T. 2013. Relationships and variability of agronomic and physiological characters in mungbean. African J Biotechnol. 10(49):9992–10000. doi:10.5897/AJB11.1288.

Masuda T, Goldsmith P. 2009. World Soybean Production: Area Harvested, Yield, and Long-Term Projections. Int Food Agribus Manag Rev. 12(4):143–162. doi:10.22004/ag.econ.92573.

Motaghi S, Nejad TS. 2014. The effect of different levels of humic acid and potassium fertilizer on physiological indices of growth. Int J Biosci. 5(2):99–105. doi:10.12692/ijb/5.2.99-105.

Novelli LE, Caviglia OP, Melchiori RJM. 2011. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma. 167–168:254–260. doi:10.1016/j.geoderma.2011.09.015.

Oliveira HC, Freschi L, Sodek L. 2013. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiol Biochem. 66:141–149. doi:10.1016/j.plaphy.2013.02.015.

Putra FP, Saparso S, Rohadi S, Ismoyojati R. 2019. Respon Tanaman Kentang (Solanum tuberosum l.) pada Berbagai Ketebalan Media Cocopeat dan Waktu Pemberian Nutrisi Sundstrom. J Ilm Pertan. 15(2):57–66. doi:10.31849/jip.v15i2.1950.

Putra FP, Saparso S, Suparto SR, Faozi K. 2019. Relationship of Growth and Yield Mini Tubers of Potato Under Cocopeat Media and Frequency of Fertilizer. Bernas. 15(1):11–19.

Putra FP, Yudono P, Waluyo S. 2017. Growth and Yield of Upland Rice Under Intercropping System with Soybean in Sandy Coastal Area. Ilmu Pertan (Agricultural Sci. 2(3):130–136. doi:10.22146/ipas.25215.

Reich PB, Oleksyn J, Wright IJ. 2009. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia. 160(2):207–212. doi:10.1007/s00442-009-1291-3.

Saeed I, Khattak GSS, Zamir R. 2007. Assosiation of seed yield and some important morphological traits in mungbean (Vigna radiata L.). Pak J Bot. 39(7):2361–2366.

SAS Institute Inc. 2001. Step-by-step Programming with Base SAS® Software. Cary, NC: SAS Institute Inc.

Singh SK, Reddy VR. 2016. Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO 2. Physiol Plant. 157(2):234–254. doi:10.1111/ppl.12415.

Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th ed. United States Department of Agriculture: Natural Resources Conservation Service.

Suryanto P, Putra ETS, Suwignyo B, Prianto SD, Alam T. 2017. Morpho-Physiological Characters and Soybean Productivity on Alfisol and Vertisol under Intercropping with Kayu Putih (Melaleuca cajuputi). AGRIVITA J Agric Sci. 39(2):153–159. doi:10.17503/agrivita.v39i2.759.

Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A. 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv. 151(1):53–59. doi:10.1016/j.biocon.2012.01.068.

Valentine AJ, Benedito VA, Kang Y. 2018. Legume Nitrogen Fixation and Soil Abiotic Stress: From Physiology to Genomics and Beyond. In: Annual Plant Reviews online. Chichester, UK: John Wiley & Sons, Ltd. p. 207–248.

Zelalem A, Tekalign T, Nigussie D. 2009. Response of potato (Solanum tuberosum L.) to different rates of nitrogen and phosphorus fertilization on vertisols at Debre Berhan, in the central highlands of Ethiopia. African J Plant Sci. 3(2):16–24.


  • There are currently no refbacks.