Efektivitas Pupuk Organik dan Interval Penyiraman terhadap Pertumbuhan dan Produksi Tomat

Riska Nur Fateha, Bait Ilhaminnur, Soemarno Soemarno, Niken Rani Wandansari

Abstract

This research aimed to determine the effect of various organic fertilizer and watering intervals on plant growth and tomato yield, also soil nutrient content. The method used was factorial completely randomized design with a combination of organic fertilizer types (kaliandra compost, water hyacinth and Mexican sunflower compost, cow manure and straw compost, and vermicompost) and watering intervals (1, 3 and 7 days). Mycorrhizal dose used was 2 grams/plant, while organic fertilizer used was 160 g/plant. The results showed that the interaction between organic fertilizer and watering intervals did not affected significantly on tomato plant height, stem diameter, root length, initial flowering, fruit diameter, number of fruits and fresh fruit weight and soil nutrient content. Watering interval affected significantly to all parameters of the observation. Addition of organic fertilizer can increase soil C-organic content by 6.58% and P-available by 170.51% compared to controls. In general, the highest tomato production was obtained in the combination of treatments water hyacinth and Mexican sunflower compost and watering interval of 1 day, which was 231 g/plant or equivalent 7.22 tons/ha.

Keywords

Hybrid variety; Mycorrhizal; Nutrient content

Full Text:

PDF(ID)

References

Adekiya AO, Agbede TM. 2009. Growth and yield of tomato ( Lycopersicon esculentum Mill ) as influenced by poultry manure and NPK fertilizer from 1000-1240 mm . The type of soil is Alfisol classified as Oxic Tropuldalf ( USDA ) or Luvisol ( FAO ) derived from. EmirJFood Agric. 21(1):10–20.

Atiyeh RM, Arancon N, Edwards CA, Metzger JD. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes In ¯ uence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. 8524(December). doi: 10.1016/S0960-8524(00)00064-X.

Berruti A, Lumini E, Balestrini R, Bianciotto V. 2016. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers : Let ’ s Benefit from Past Successes. 6(January):1–13. doi: 10.3389/fmicb.2015.01559.

Bo L, Shumei R, Peiling Y, Qinghua K. 2007. Impacts of different water supply on tomato root distribution and yield in greenhouse. Transactions of the Chinese Society of Agricultural Engineering 2007(9).

Carrera LM, Buyer JS, Vinyard B, Abdul-baki AA, Sikora LJ, Teasdale JR. 2007. Effects of cover crops , compost , and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol. 37:247–255. doi: 10.1016/j.apsoil.2007.08.003.

Chen J, Kang S, Du T, Qiu R, Guo P, Chen R. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric Water Manag. 129(April 2018):152–162. doi: 10.1016/j.agwat.2013.07.011.

Demir K, Sahin O, Kadioglu YK, Pilbeam DJ, Gunes A. 2010. Scientia Horticulturae Essential and non-essential element composition of tomato plants fertilized with poultry manure. Sci Hortic (Amsterdam). 127(1):16–22. doi: 10.1016/j.scienta.2010.08.009.

Desmarina R. 2009. Respon tanaman tomat terhadap frekuensi dan taraf pemberian air. Institut Pertanian Bogor.

Dikinya O, Mufwanzala N. 2010. Chicken manure-enhanced soil fertility and productivity : Effects of application rates. 1(May):46–54.

Du YD, Cao HX, Liu SQ, Gu XB, Cao YX. 2017. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. Journal of Integrative Agriculture 16(5): 1153–1161.

Erlita, Hariani F. 2017. Pemberian Mikoriza dan Pupuk Organik terhadap Pertumbuhan dan Produksi Tanaman Jagung (Zea Mays). Agrium. 20(3):268–272.

FAO (Food and Agriculture Oganization). 2012. Crop yield rensponse to water.

Firmansyah I, Sumarni N. 2013. Pengaruh Dosis Pupuk N dan Varietas Terhadap pH Tanah , N-Total Tanah , Serapan N , dan Hasil Umbi Bawang Merah ( Allium ascalonicum L .) pada Tanah Entisols-Brebes Jawa Tengah ( Effect of N Fertilizer Dosages and Varieties On Soil pH , Soil Total-N , N U. J Hortik. 23(4):358–364.

Gunadi N, Sulastrini I. 2013. Penggunaan Netting House dan Mulsa Plastik untuk Meningkatkan Pertumbuhan dan Hasil Tanaman Cabai Merah ( The Use of Netting House and Plastic Mulch to Increase the Growth and Yield of Hot Peppers ). J Hortik. 23(1):36–46.

Harmanto, Salokhe V, Babel MS, Tantau HJ. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric Water Manag. 71:225–242. doi: 10.1016/j.agwat.2004.09.003.

Hartati S. (2000). Penampilan genotip tanaman tomat hasil mutasi buatan pada kondisi stress air dan kondisi optimal. Jurnal Agrosains 2(2): 35–42.

Hartatik W, Husnain, Widowati LR. 2015. Peranan Pupuk Organik dalam Peningkatan Produktivitas Tanah dan Tanaman. J Sumberd Lahan. 9(2):107–120.

Hasibuan ASZ. 2015. Pemanfaatan Bahan Organik dalam Perbaikan Beberapa Sifat Tanah Pasir Pantai Selatan Kulon Progo. Planta Trop J Agro Sci. 3(1):31–40. doi: 10.18196/pt.2015.037.31-40.

Hempel FD, Welch DR, Feldman LJ. 2000. Floral induction and determination : where is flowering controlled ? 5(1):17–21.

Hidayat AT. 2009. Potensi pelepasan N-NH4+ dan N-NO3- tanah Andisol yang ditanami sayuran di daerah dataran tinggi. Institut Pertanian Bogor.

Ibrahim A, Wahb-Allah M, Abdel-Razzak H, Alsadon A. 2014. Growth, Yield, Quality and Water Use Efficiency of Grafted Tomato Plants Grown in Greenhouse under Different Irrigation Levels. Life Sci J. 11(2):118–126.

Iii LRB, Ristaino JB. 2002. Effect of Synthetic and Organic Soil Fertility Amendments on Southern Blight , Soil Microbial Communities , and Yield of Processing Tomatoes. 92(2):181–189.

Jong M De, Mariani C, Vriezen WH. 2009. The role of auxin and gibberellin in tomato fruit set. 60(5):1523–1532. doi: 10.1093/jxb/erp094.

Jurianto, Santoso E, Abdurrahman T. 2017. Pengaruh pupuk organik terhadap pertumbuhan dan hasil tanaman tomat pada tanah Aluvial. Jurnal Sains Mahasiswa Pertanian 6(2).

Khayat E, Ravad D, Zieslin N. 1985. The effects of various night-temperature regimes on the vegetative growth and fruit production of tomato plants. Sci Hortic (Amsterdam). 27:9–13.

Kusumawati K, Muhartini S, Rogomulyo R. 2015. Pengaruh Konsentrasi dan Frekuensi Pemberian Limbah Tahu terhadap Pertumbuhan Dan Hasil Bayam (amaranthus tricolor l.) pada media pasir pantai. Vegetalika. 4(2):48–62. doi: 10.22146/veg.9274.

Kusumayati N, Nurlaelih EE, Setyobudi L. 2015. Tingkat keberhasilan pembentukan buah tiga varietas tanaman tomat (Lycopersicon esculentum Mill.) pada lingkungan yang berbeda. Jurnal Produksi Tanaman 3(8): 683–688.

Kuswandi PC. 2015. Aplikasi Mikoriza pada Media Tanam Dua Varietas Tomat untuk Cekaman Kekeringan Applicaton Of Mycorriza On Planting Media Of Two Tomato Varieties To Increasevegetable Productivity In Drought. 4(1):17–22.

Li Y, Li J, Rao M. 2006. Effects of drip fertigation strategies on root distribution and yield of tomato. Nongye Gongcheng Xuebao (Transactions of the Chinese Society of Agricultural Engineering) 22(7): 205–207.

Lu J, Shao G, Cui J, Wang X, Keabetswe L. 2019. Yield , fruit quality and water use e ffi ciency of tomato for processing under regulated de fi cit irrigation : A meta-analysis. Agric Water Manag. 222(June):301–312. doi: 10.1016/j.agwat.2019.06.008.

Machado RM, Maria do Rosàrio GO. 2005. Tomato root distribution, yield and fruit quality under different subsurface drip irrigation regimes and depths. Irrigation Science 24(1): 15–24.

Nangare DD, Singh Y, Kumar PS, Minhas PS. 2016. Growth , fruit yield and quality of tomato ( Lycopersicon esculentum Mill .) as affected by deficit irrigation regulated on phenological basis. Agric Water Manag. 171:73–79. doi: 10.1016/j.agwat.2016.03.016.

Navarrete M, Jeannequin B. 2000. Effect of frequency of axillary bud pruning on vegetative growth and fruit yield in greenhouse tomato crops. Sci Agric. 86:197–210.

Niu W, Jia Z, Zhang X, Shao H. 2012. Effects of Soil Rhizosphere Aeration on the Root Growth and Water Absorption of Tomato. Clean-Soil, Air, Water. 00(0):1–8. doi: 10.1002/clen.201100417.

Novita D. 2013. Pengaruh pupuk terhadap sifat kimia tanah dan populasi mikrob rizosfer tanaman kilemo (Litsea cubeba Pers). Institut Pertanian Bogor.

Ojeniyi SO, Awodun MA. 2007. Effect of Animal Manure Amended Spent Grain and Cocoa Husk on Nutrient Status , Growth and Yied of Tomato. (April). doi: 10.3923/ijar.2007.406.410.

Orman Ş, Kaplan M. 2011. Effects of Elemental Sulphur and Farmyard Manure on pH and Salinity of Calcareous Sandy Loam Soil and Some Nutrient Elements in Tomato Plant. (January).

Patane C, Cosentino SL. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric Water Manag. 97:131–138. doi: 10.1016/j.agwat.2009.08.021.

Patanè C, Tringali S, Sortino O. 2011. Scientia Horticulturae Effects of deficit irrigation on biomass , yield , water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci Hortic (Amsterdam). 129:590–596. doi: 10.1016/j.scienta.2011.04.030.

Patil NM. 2010. Biofertilizer effect on growth, protein and carbohydrate content in Stevia rebaudiana var. Bertoni. J. Rec Res ScienceTechnology, 2(10): 42-44.

Permentan. 2006. Peraturan Menteri Pertanian No.2/Pert/Hk.060/2/2006 tentang Pupuk Organik dan Pembenah Tanah. http://perundangan.pertanian.go.id/admin/p_mentan/Permentan-02-06.pdf.

Simanungkalit. (2006). Prospek pupuk organik dan pupuk hayati di Indonesia (Simanungkalit et al., Ed.). Bogor: Balai Besar Litbang Sumberdaya Lahan Pertanian Badan Penelitian dan Pengembangan Pertanian.

Susilawati , Mustoyo, Budhisurya E, Anggono RCW, Simanjuntak BH. 2013. Analisis kesuburan tanah dengan indikator mikroorganisme tanah pada berbagai sistem penggunaan lahan di plateau Dieng. Agric 25(1): 64-72.

Syakur A. 2011. Analisis iklim mikro di dalam rumah tanaman untuk memprediksi waktu pembungaan dan matang fisiologis tanaman tomat dengan menggunakan metode Artificial Neural Network. J. Agroland 18(2): 97–103.

Wang D, Kang Y, Wan S. 2007. Effect of soil matric potential on tomato yield and water use under drip irrigation condition. Agric Water Manag. 87:180–186. doi: 10.1016/j.agwat.2006.06.021.

Wasito, Sarwani M, Ananto EE. 2010. Persepsi dan adopsi petani terhadap teknologi pemupukan berimbang pada tanaman padi dengan indeks pertanaman 300. Penelitian Pertanian Tanaman Pangan 29(3): 157–165.

Wudiri BB, Henderson DW. 1985. Effect of Water Stress on Flowering and Fruit Set In Processing- Tomatoes. Sci Hortic (Amsterdam). 27:189–198.

Xiukang W, Li P, Shi P. 2018. Root Growth , Fruit Yield and Water Use Efficiency of Greenhouse Grown Root Growth , Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels. J Plant Growth Regul. 0(0):0. doi: 10.1007/s00344-018-9850-7.

Zlatev Z, Lidon FC. 2012. An overview on drought induced changes in plant growth , water relations and photosynthesis. EmirJFood Agric. 24(1):57–72.

Zotarelli L, Scholberg JM, Dukes MD, Mun R, Icerman J. 2009. Tomato yield , biomass accumulation , root distribution and irrigation water use efficiency on a sandy soil , as affected by nitrogen rate and irrigation scheduling. Agric Water Manag. 96:23–34. doi: 10.1016/j.agwat.2008.06.007.

Refbacks

  • There are currently no refbacks.