Vegetation and Seed Banks on Ex-manganese Mining in Kaubele Village Biboki Moenleu District

Wilda Lumban Tobing, Kamaluddin Kamaluddin, Marinus Kofi


Mining activities are required to carry out reclamation. Reclamation efforts are aimed at restoring the condition of the mined land. The manganese mine in Kaubele Village has been carried out since 2011 but there has been no clear reclamation effort, causing the land to be abandoned. The study aimed to determine the vegetation and seed banks found on former manganese mining land in Kaubele Village, Biboki Moenleu District. This activity was carried out in July - December 2022 on former manganese mining land in 2010 and 2018. Vegetation was collected using a purposive sampling method. At each observation location, 5 main points were taken. Each point at each location is spread by 250 points with a 2 m x 2 m plot. The soil was taken at a depth of 0-20 cm and an area of 30 cm x 30 cm. Furthermore, it is placed in the nursery media for 3 months to find out the vegetation that grows. Vegetation and seed banks were analyzed based on species density, relative density, species frequency, relative frequency, and important value index. Vegetation analysis is a step in determining plants to restore ex-mining land. The vegetation in 2018 had more species compared to 2010. At both locations, there were the same 3 plants, namely Cynodon dactylon L. with an IVI of 21.421% (2010) and an IVI of 17.605% (2018), Chromolaena odorata L. with an IVI of 10.409% (2010) and IVI of 9.125% (2018), and Malvella leprosa (Ortega) krapov. with an IVI of 8.097% (2010) and an IVI of 7.031% (2018). Analysis of seed banks shows that there are 7 similar seeds found in different mining locations with respective IVI of Dactyloctenium aegyptium L. 78.550 % (2010) and 14.169 % (2018), Chloris virgata Trin 13.113 % (2010) and 8.986 % (2018), Panicum virgatum L. IVI 20.384 % (2010) and 46.834 (2017). (2018), Synedrella nodiflora L. IVI 22.068 % (2010) and 14.169 (2018), and Phyllanthus urinaria L. IVI 13.177 % (2010) and 12.957 % (2018).


accumulator; important value index; reclamation efforts

Full Text:



Adkins, J., Jastrow, J. D., Morris, G. P., Six, J., & de Graaff, M. A. (2016). Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation. Geoderma, 262.

Ahmed, D. A., & Slima, D. F. (2018). Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environmental Science and Pollution Research, 25(15).

Albornoz, C. B., Larsen, K., Landa, R., Quiroga, M. A., Najle, R., & Marcovecchio, J. (2016). Lead and zinc determinations in Festuca arundinacea and Cynodon dactylon collected from contaminated soils in Tandil (Buenos Aires Province, Argentina). Environmental Earth Sciences, 75(9).

Altaf, R., Altaf, S., Hussain, M., Shah, R. U., Ullah, R., Ullah, M. I., Rauf, A., Ansari, M. J., Alharbi, S. A., Alfarraj, S., & Datta, R. (2021). Heavy metal accumulation by roadside vegetation and implications for pollution control. In PLoS ONE, 16(5).

Arshi, A. (2017). Reclamation of coalmine overburden dump through environmental friendly method. Saudi Journal of Biological Sciences, 24(2).

Belhaj, D., Athmouni, K., Ahmed, M. B., Aoiadni, N., El Feki, A., Zhou, J. L., & Ayadi, H. (2018). Polysaccharides from Phormidium versicolor (NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests. International Journal of Biological Macromolecules, 113.

Bonanno, G., & Cirelli, G. L. (2017). Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicology and Environmental Safety, 143.

Chachalis, D. (2015). Wild poinsettia (Euphorbia heterophylla): An emerging weed in cotton and processing tomato in Greece. Hellenic Plant Protection Journal, 8(1).

Das, P., Bora, P., Paul, N., & Bhattacharyya, N. (2021). Vegetation composition and assessment of phytotoxicity in a paper mill dumpsite. Plant Science Today, 8(1).

Ding, W., Zhang, J., Wu, S. C., Zhang, S., Christie, P., & Liang, P. (2019). Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. Ecotoxicology and Environmental Safety, 183.

Divya, T. V, Chandwadkar, P., & Acharya, C. (2018). NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. Aquatic Toxicology, 199.

Du, J., Qiu, B., Pedrosa Gomes, M., Juneau, P., & Dai, G. (2019). Influence of light intensity on cadmium uptake and toxicity in the cyanobacteria Synechocystis sp. PCC6803. Aquatic Toxicology, 211.

Duman, F., Urey, E., & Koca, F. D. (2015). Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environmental Science and Pollution Research, 22(22).

Dwiati, M., & Susanto, A. H. (2020). Morphological and physiological adaptation of Synedrella nodiflora (L.) Gaertn. in various altitudes. IOP Conference Series: Earth and Environmental Science, 550(1).

Fiedler, P. (1996). Common Wetland Plants of Central California. US Army Corps of Engineers, Sacramento District.

Garba, S. T., Gudusu, M., & Inuwa, L. B. (2018). Accumulation ability of the native grass species, Cyperus rotundus for the heavy metals; zinc (Zn), cadmium (Cd), nickel (Ni) and lead (Pb). International Research Journal of Pure and Applied Chemistry, 17(1).

Government Regulation No. 78 of 2010 concerning Reclamation and Post-mining. (2010). Peraturan Pemerintah (PP), 23.

Guo, Z., Gao, Y., Cao, X., Jiang, W., Liu, X., Liu, Q., Chen, Z., Zhou, W., Cui, J., & Wang, Q. (2019). Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (Panicum virgatum L.). International Journal of Phytoremediation, 21(14).

Haghighi, O., Shahryari, S., Ebadi, M., Modiri, S., Zahiri, H. S., Maleki, H., & Noghabi, K. A. (2017). Limnothrix sp. KO05: A newly characterized cyanobacterial biosorbent for cadmium removal: the enzymatic and non-enzymatic antioxidant reactions to cadmium toxicity. Environmental Toxicology and Pharmacology, 51.

Ikhajiagbe, B. (2016). Possible adaptive growth responses of Chromolaena odorata during heavy metal remediation. Ife Journal of Science, 18(2), 403-411–411.

Ilandara, R., Chandrapala, R., Jayasuriya, W. B. N., & Suresh, T. S. (2015). Phytochemical and ethno-pharmacological properties of Desmodium triflorum; A Review. The Pharmaceutical Journal of Sri Lanka, 5(1).

Irshad, M., Ahmad, S., Pervez, A., & Inoue, M. (2015). Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar Industrial Estate, Pakistan. International Journal of Phytoremediation, 17(2).

Iskandar, Suwardi, & D.T. Suryaningtyas. (2012). Reklamasi Lahan-lahan Bekas Tambang : Beberapa permasalahan terkait sifat-sifat tanah dan solusinya. Seminar Nasional Topik Khusus: Teknologi Pemupukan dan Pemulihan Lahan Terdegradasi.

Kar, D., & Palit, D. (2016). Assessment of plant species assemblages with their distribution in an open cast mining area of Raniganj coalfield, West Bengal, India. International Journal of Scientific & Engineering Research, 7(7), 443–452.

Kaur, M., & Aggarwal, N. K. (2017). Trianthema portulacastrum L.-the noxious weed and its control. Advances in Plants & Agriculture Research, 6(3).

Kementerian ESDM. (2017). Kajian Dampak Hilirisasi Mineral Mangan Terhadap Perekonomian Regional.

Kumar, A., Maiti, S. K., Tripti, Prasad, M. N. V., & Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. Journal of Soils and Sediments, 17(5).

Li, J. K., Zhang, D., Zhou, P., & Liu, Q. L. (2018). Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing. Huanjing Kexue. Environmental Science, 39(8).

Li, W. tao, Zheng, Y. long, & Wang, R. fang. (2022). Extension of the EICA hypothesis for invasive Chromolaena odorata. Acta Oecologica, 114.

Li, X., Chen, D., Li, B., & Yang, Y. (2021). Cd accumulation characteristics of Salvia tiliifolia and changes of rhizospheric soil enzyme activities and bacterial communities under a Cd concentration gradient. Plant and Soil, 463(1–2).

Liang, P., Feng, X., You, Q., Zhang, J., Cao, Y., Leung, A. O. W., & Wu, S. (2016). Mercury speciation, distribution, and bioaccumulation in a river catchment impacted by compact fluorescent lamp manufactures. Environmental Science and Pollution Research, 23(11).

Lin, L., Jin, Q., Liu, Y., Ning, B., Liao, M., & Luo, L. (2014). Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method. Environmental Toxicology and Chemistry, 33(11).

Lindsay, W. L. (1980). Chemical equilibria in soils. Clays and Clay Minerals, 28(4).

Loddo, D., Carlesi, S., & Da Cunha, A. T. P. (2019). Germination of Chloris barbata, Cynodon dactylon, and Cyperus rotundus from Angola at constant and alternate temperatures. Agronomy, 9(10).

Mandal, A. K., Ga, D., Banik, M., Kumar, A., & Kumar, V. (2017). Impact of climate change on adaptation capacity of horse purslane (Trianthema portulacastrum). The Pharma Innovation Journal, 6(11), 414–418.

Minick, K. J., Strahm, B. D., Fox, T. R., Sucre, E. B., Leggett, Z. H., & Zerpa, J. L. (2014). Switchgrass intercropping reduces soil inorganic nitrogen in a young loblolly pine plantation located in coastal North Carolina. Forest Ecology and Management, 319.

Moshobane, M. C., Mudereri, B. T., Mukundamago, M., & Chitata, T. (2022). Predicting future distribution patterns of Jatropha gossypiifolia L. in South Africa in response to climate change. South African Journal of Botany, 146.

Ngo, T. D., Krishnan, M., Boutsalis, P., Gill, G., & Preston, C. (2018). Target-site mutations conferring resistance to glyphosate in feathertop rhodes grass (Chloris virgata) populations in Australia. Pest Management Science, 74(5).

Omoregie, G. O., Ikhajiagbe, B., & Anoliefo, G. O. (2019). Phytoremediation potential of four heavy metals in soil by Chromolaena odorata ( L .) king & robinson at the phytotoxicity screening Benchmarks. Tanzania Journal of Science, 45(3), 372–381.

Osman, I. M., Acar, R., & Babikir, E. S. N. (2022). Exploiting indigenous plants species to rehabilitate degraded rangelands of sudan using Rhynchosia minima (L.) DC. Proceeding Book, page 157.

Pan, G., Liu, W., Zhang, H., & Liu, P. (2018). Morphophysiological responses and tolerance mechanisms of Xanthium strumarium to manganese stress. Ecotoxicology and Environmental Safety, 165.

Pan, G., Yan, W., Zhang, H., Xiao, Z., Li, X., Liu, W., & Zheng, L. (2019). Subcellular distribution and chemical forms involved in manganese accumulation and detoxification for Xanthium strumarium L. Chemosphere, 237.

Patiung, O., Sinukaban, N., Tarigan, S. D., & Darusman, D. (2011). Pengaruh umur reklamasi lahan bekas tambang batubara terhadap fungsi hidrologis. Hidrolitan, 2(2).

Pramuseto, J., Marlina, L., & Zuhri, R. (2020). Identifikasi tumbuhan pionir di area bekas tambang biji besi Desa Pulau Layang, Kecamatan Batang Masumai. BIOCOLONY: Jurnal Pendidikan Biologi dan Biosains, 3(2), 1–31.

Ratan, S., Bhawana, P., & Fulekar, M. H. (2015). Characterization of PGP traits by heavy metals tolerant Pseudomonas putida and Bacillus safensis strain isolated from rhizospheric zone of weed (Phyllanthus urinaria) and its efficiency in Cd and Pb removal. International Journal of Current Microbiology and Applied Sciences, 4(3), 954-975.

Sabo, A., & ladan, M. (2018). Phytoremediation potential of some indigenous herbaceous plant species growing on metalliferous mining sites at Nahuta, Bauchi State, Nigeria. IOSR Journal of Environmental Science, 12(4), 41–46.

Sarkar, M. (2013). Effects of torrefaction and densification on devolatilization kinetics and gasification performance of switchgrass. M.Sc.Thesis: Faculty of the Graduate College of the Oklahoma State University.

Seran, R., & Edi, E. (2021). Kajian geofisika dan geokimia mangan di Desa Oetalus Kabupaten TTU. Indonesian Journal of Applied Physics, 11(1), 40–50.

Setyowati, R. D. N., Amala, N. A., & Aini, N. N. U. (2018). Studi pemilihan tanaman revegetasi untuk keberhasilan reklamasi lahan bekas tambang. Al-Ard: Jurnal Teknik Lingkungan, 3(1).

Srivastava, R., Mohapatra, M., & Latare, A. (2020). Impact of land use changes on soil quality and species diversity in the Vindhyan dry tropical region of India. Journal of Tropical Ecology, 36(2).

Taqiyuddin, M. F. K. F. K., & Hidayat, L. (2020). Reklamasi tanaman adaptif lahan tambang batubara PT. BMB Blok Dua Kabupaten Tapin Kalimantan Selatan. Ziraa’ah, 45(3).

Tobing, W. L., Kolo, M. M., Bria, D., Purba, M. P., Maria, E., & Soares, P. (2022). Soil characterization in ex-manganese mining land in North-Central Timor District, East Nusa Tenggara. International Journal of Science, Technology & Managemen, 3(6), 1753–1762.

Ugalechumi, K., Geethalakshmi, V., Panneerselvam, S., Chinnusamy, C., Jeyakumar, P., & Chinnamuthu, C. R. (2018). Evaluating the effect of horse pursulane (Trianthema portulacastrum L.) competition on maize (Zea mays L.). International Journal of Current Microbiology and Applied Sciences, 7(6).

Umebese, C. E., Okunade, K. I., & Orotope, O. M. (2012). Impact of water deficit stress on growth and alkaloid content of organs of Spigelia anthelmia (L.). Ife Journal of Science, 14(2), 357–362.

Uyi, O. O., Ekhator, F., Ikuenobe, C. E., Borokini, T. I., Aigbokhan, E. I., Egbon, I. N., Adebayo, A. R., Igbinosa, I. B., Okeke, C. O., Igbinosa, E. O., & Omokhua, G. A. (2014). Chromolaena odorata invasion in Nigeria: A case for coordinated biological control. In Management of Biological Invasions 5(4).

Wang, J., Xiong, Y., Zhang, J., Lu, X., & Wei, G. (2020). Naturally selected dominant weeds as heavy metal accumulators and excluders assisted by rhizosphere bacteria in a mining area. Chemosphere, 243.

Wang, Q., Gu, M., Ma, X., Zhang, H., Wang, Y., Cui, J., Gao, W., & Gui, J. (2015). Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. Environmental Science and Pollution Research, 22(21).

Wang, Y., Li, L., Zhou, D. wei, & Weiner, J. (2016). The allometry of reproductive allocation in a Chloris virgata population in response to simulated atmospheric nitrogen deposition. Basic and Applied Ecology, 17(5).

Wright, L., & Turhollow, A. (2010). Switchgrass selection as a ‘ model’ bioenergy crop: A history of the process. Biomass and Bioenergy, 34(6).

Xue, L., Liu, J., Shi, S., Wei, Y., Chang, E., Gao, M., Chen, L., & Jiang, Z. (2014). Uptake of heavy metals by native herbaceous plants in an antimony mine (Hunan, China). Clean-Soil, Air, Water, 42(1).

Yamashita, O. M., Albuquerque, M. C. F., Guimarães, S. C., Da Silva, J. L., & De Carvalho, M. A. C. (2008). Influência da temperatura e da luz na germinação de sementes de couve-cravinho (Porophyllum ruderale (Jacq.) Cass.). Revista Brasileira de Sementes, 30(3).

Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science and Engineering, 8(3).

Zhan, F., Li, B., Jiang, M., Li, T., He, Y., Li, Y., & Wang, Y. (2019). Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead–zinc mine wasteland. International Journal of Phytoremediation, 21(9).