Serapan dan Efisiensi Penyerapan Hara N dan P Pada Pakcoy (Brassica rapa L. Ssp. Chinensis) Sistem Vertikultur di Lahan Kering

Wilda Lumban Tobing, Eduardus Yosef Neonbeni, Asep Ikhsan Gumelar, Maria Angelina Tuas, Rolinus Sabuna

Abstract

Pakcoy cultivation in dry land is still not optimal due to the growing environment that requires technology. Fertigation verticulture is used as an effort to increase pakcoy production in dry land. The purpose of this study was to determine the fertigation time, composition of planting media and the distance between planting holes and their interactions in increasing nutrient uptake and efficiency of N and P absorption for pakcoy plants on the vertical fertigation system. This research was carried out in the agricultural garden of the Main Seed Center of the North Central Timor Regency Agriculture Office from June to December 2021. The study used an experimental method with a Separate Plot Design with 3 plots where the main plot was the fertigation time which consisted of 3 levels, namely W1 (60 seconds). ), W2 (90 seconds), and W3 (120 seconds). The main subplot is the composition of the growing media which consists of 4 levels, namely: M1 (Soil: Sand (1:1)); M2 (Soil: Biochar (1:1)); M3 (Soil: Biochar (1:1)); and M4 (Soil: Sand: Biochar (1:1:1)). The subplots are the spacing of the planting holes consisting of 3 levels, namely: J1 (15 cm); J2 (20 cm); and J3 (25 cm). There were 36 treatments which were repeated 4 (four) times in order to obtain a total of 144 treatments. Data analysis used a comparative test using the Duncan Multiple Range Test method at 5% level. The results showed that the fertigation time of 120 seconds (W3) and the composition of the growing media: biochar (1:1) (M2) and their interactions increased the N and P uptake of pakcoy plants grown in a verticulture system on dry land by treatment. The fermentation time of 120 seconds (W3) and the composition of the growing media: biochar (1:1) (M2) also increased the efficiency of N and P nutrient absorption.

Keywords

biochar; fertigation time; nutrient uptake efficiency; planting media composition

Full Text:

PDF

References

Adeli, A., Sistani, K. R., Rowe, D. E., & Tewolde, H. (2005). Effects of broiler litter on soybean production and soil nitrogen and phosphorus concentrations. Agronomy Journal, 97(1). https://doi.org/10.2134/agronj2005.0314

Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. In Applied Soil Ecology (Vol. 119). https://doi.org/10.1016/j.apsoil.2017.06.008

Agyarko-Mintah, E., Cowie, A., Van Zwieten, L., Singh,

B. P., Smillie, R., Harden, S., & Fornasier, F. (2017). Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Management, 61. https://doi.org/10.1016/j.wasman.2016.12.009

Balai Penelitian Tanah. (2009). Petunjuk Teknis Analisis Kimia Tanah, Tanaman , Air dan Pupuk. In Balai Penelitian Tanah (Issue 2).

Cao, Y., Gao, Y., Qi, Y., & Li, J. (2018). Biochar- enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant- parasitic nematodes in excessively fertilized cucumber soils. Environmental Science and Pollution Research, 25(8). https://doi.org/10.1007/s11356-017-1061-4

Cen, R., Feng, W., Yang, F., Wu, W., Liao, H., & Qu, Z. (2021). Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112198

Eissa, M. A. (2019). Efficiency of P Fertigation for Drip- Irrigated Potato Grown on Calcareous Sandy Soils. Potato Research, 62(1). https://doi.org/10.1007/s11540-018-9399-7

Elliott, G. C., & Läuchli, A. (1985). Phosphorus Efficiency and Phosphate–Iron Interaction in Maize 1 . Agronomy Journal, 77(3), 399–403. https://doi.org/10.2134/agronj1985.0002196200770 0030011x

Eudoxie, G., & Martin, M. (2019). Compost Tea Quality and Fertility. In Organic Fertilizers - History, Production and Applications. https://doi.org/10.5772/intechopen.86877

Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. In Soil Biology and Biochemistry (Vol. 103). https://doi.org/10.1016/j.soilbio.2016.08.001

Haryati, U. (2014). Teknologi Irigasi Suplemen untuk Adaptasi Perubahan Iklim pada Pertanian Lahan Kering. Sumber Daya Lahan, 8(1), 43–57.

Hassan, A. Z. A., Wahab, A., & Mahmoud, M. (2013). The combined effect of bentonite and natural zeolite on sandy soil properties and productivity of some crops. In Topclass Journal of Agricultural Research (Vol. 1, Issue 3).

Hong, C., & Lu, S. (2018). Does biochar affect the availability and chemical fractionation of phosphate in soils? Environmental Science and Pollution Research, 25(9). https://doi.org/10.1007/s11356-018-1219-8

Kammann, C. I., Schmidt, H. P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H. W., Conte, P., & Stephen, J. (2015). Plant growth improvement mediated by nitrate capture in co- composted biochar. Scientific Reports, 5. https://doi.org/10.1038/srep11080

Karbout,N, Brahim, N., Bol, R., Moussa, M., & Bousnina, H. (2019). Applying biochar from date palm waste residues to improve the organic matter, nutrient status and water retention in sandy oasis soils. Journal of Research in Environmental and Earth Sciences, 7.

Khanif, A. (2018). Pengaruh Komposisi Media Organik Dan Jarak Tanam Pada Sistem Vertikultur Terhadap Pertumbuhan Sawi Pakcoy (Brassica rapa L.). Doctoral Dissertation, University of Muhammadiyah Malang.

Lasmini, S. A., Wahyudi, I., & Nurhayati. (2017). Optimalisasi Pengelolaan Lahan Kering untuk Meningkatkan Pendapatan Masyarakat Berbasis Inovasi Teknologi dan Kearifan Lokal. Pengabdian Pada Masyarakat, 6(11).

Liang, Y., Cao, X., Zhao, L., Xu, X., & Harris, W. (2014). Phosphorus Release from Dairy Manure, the Manure-Derived Biochar, and Their Amended Soil: Effects of Phosphorus Nature and Soil Property. Journal of Environmental Quality, 43(4). https://doi.org/10.2134/jeq2014.01.0021

Lukmanul, A. (2021). Urban Farming Metode Teknologi Dan Inovasi Baru Pada Pertanian Perkotaan (Urban Farming Technology and Methods New Innovations in Urban Agriculture). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3782290

Luo, T., Zhu, Y., Lu, W., Chen, L., Min, T., Li, J., & Wei, C. (2021). Acidic compost tea enhances phosphorus availability and cotton yield in calcareous soils by decreasing soil pH. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 71(8). https://doi.org/10.1080/09064710.2021.1933161

Luo, Y., Lin, Q., Durenkamp, M., Dungait, A. J., & Brookes, P. C. (2017). Soil priming effects following substrates addition to biochar-treated soils after 431 days of pre-incubation. Biology and Fertility of Soils, 53(3). https://doi.org/10.1007/s00374-017-1180-6

Maestrini, B., Herrmann, A. M., Nannipieri, P., Schmidt, M. W. I., & Abiven, S. (2014). Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biology and Biochemistry, 69. https://doi.org/10.1016/j.soilbio.2013.11.013

Masto, R. E., Kumar, S., Rout, T. K., Sarkar, P., George, J., & Ram, L. C. (2013). Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111. https://doi.org/10.1016/j.catena.2013.06.025

Matheus, R., Basri, M., Rompon, M. S., & Neonufa, N. (2017). Strategi Pengelolaan Pertanian Lahan Kering Dalam Meningkatkan Ketahanan Pangan Di Nusa Tenggrara Timur. Partner, 22(2). https://doi.org/10.35726/jp.v22i2.246

Mulyani, A., & H.S., M. (2019). Pengelolaan Lahan Kering Beriklim Kering untuk Pengembangan Jagung di Nusa Tenggara. Sumber Daya Lahan, 13(2), 41–52.

Mulyani, A., Nursyamsi, D., & Las, I. (2014). Percepatan pengembangan pertanian lahan kering iklim kering di Nusa Tenggara. Pengembangan Inovasi Pertanian, 7(4).

Mulyani, A., & Sarwani, M. (2013). Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 7(1), 46–57.

Naswir, S. H., Pandjaitan, N. H., & Pawitan, H. (2009). Efektivitas Sistem Fertigasi Mikro untuk Lahan Sempit (Naswir et al. ). Forum Pascasarjana, 32(1).

Obia, A., Cornelissen, G., Martinsen, V., Smebye, A. B., & Mulder, J. (2020). Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil and Tillage Research, 197. https://doi.org/10.1016/j.still.2019.104521

Oldfield, T. L., Sikirica, N., Mondini, C., López, G., Kuikman, P. J., & Holden, N. M. (2018). Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. Journal of Environmental Management, 218. https://doi.org/10.1016/j.jenvman.2018.04.061

Pant, A. P., Radovich, T. J. K., Hue, N. V., & Paull, R. E. (2012). Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Scientia Horticulturae, 148. https://doi.org/10.1016/j.scienta.2012.09.019

Pizzeghello, D., Berti, A., Nardi, S., & Morari, F. (2011). Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agriculture, Ecosystems and Environment, 141(1–2). https://doi.org/10.1016/j.agee.2011.02.011

Prayogo, C., Jones, J. E., Baeyens, J., & Bending, G. D. (2014). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50(4). https://doi.org/10.1007/s00374-013-0884-5

Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P., Urich, T., Schleper, C., Sassmann, S., Kitzler, B., Soja, G., & Hood-Nowotny, R. C. (2014). Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086388

Qayyum, M. F., Liaquat, F., Rehman, R. A., Gul, M., ul Hye, M. Z., Rizwan, M., & Rehaman, M. Z. ur. (2017). Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. Environmental Science and Pollution Research, 24(33). https://doi.org/10.1007/s11356-017-0227-4

Sara E. Fouda* and A. S. Ali. (2016). The Effects of The Conjunctive Use of Compost Tea and Inorganic Fertilizers on Radish (Raphanus sativus) Nutrient Uptake and Soil Microorganisms. Egyptian Journal of Soil Science, 56(2). https://doi.org/10.21608/ejss.2016.2369

Shenbagavalli, S. & Mahimairaja, S. (2012). Production And Characterization Of Biochar From Different Biological Wastes. International Journal of Plant, Animal and Environmental Sciences, 2(1).

Siddiqui, Y., Islam, T. M., Naidu, Y., & Meon, S. (2011). The conjunctive use of compost tea and inorganic fertiliser on the growth, yield and terpenoid content of Centella asiatica (L.) urban. Scientia Horticulturae, 130(1). https://doi.org/10.1016/j.scienta.2011.05.043

Sitepu, B. H., Ginting, S., & Mariati. (2013). Respon Pertumbuhan dan Produksi Bawang MErah (Allium ascalonicum L. Var. Tuktuk) Asal Biji terhadap PEmberian Pupuk Kalian dan Jarak Tanam. Jurnal Online Agroekoteknologi, 1(3), 711–724.

Sun, H., Lu, H., Chu, L., Shao, H., & Shi, W. (2017). Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 575. https://doi.org/10.1016/j.scitotenv.2016.09.137

Taha, S. S., Seoudi, O. A., Abdelaliem, Y. F., Tolba, M. S., & El Sayed, S. S. F. (2018). Influence of Bio- Spent Mushroom Compost Tea and Potassium Humate As a Sustainable Partial Alternate Source To Mineral-N Influence of Bio-Spent Mushroom Compost Tea and Potassium Humate As a Sustainable Partial Alternate Source To Mineral-N Fertigation on. Egypt. J. of Appl. Sci, 33(1), 103–122.

Van Zwieten, L., Kimber, S., Downie, A., Morris, S., Petty, S., Rust, J., & Chan, K. Y. (2010). A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Australian Journal of Soil Research, 48(6–7). https://doi.org/10.1071/SR10003

Wang, Q., Awasthi, M. K., Ren, X., Zhao, J., Li, R., Wang, Z., Chen, H., Wang, M., & Zhang, Z. (2017). Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting. Bioresource Technology, 245. https://doi.org/10.1016/j.biortech.2017.08.158

Wu, H., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J., Li, X., Chen, M., Xu, P., Zhou, Y., Li, F., Hu, L., & Wan, J. (2016). Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Applied Microbiology and Biotechnology, 100(19). https://doi.org/10.1007/s00253-016-7614-5

Yang, X., Chen, X., & Yang, X. (2019). Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 187. https://doi.org/10.1016/j.still.2018.11.016

Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11). https://doi.org/10.1016/j.chemosphere.2012.06.002