Respons Ulat Grayak (Spodoptera litura) terhadap Lama Perendaman Tembakau Rajang (Nicotiana tabacum L.) sebagai Insektisida Nabati

Adi Sanjaya Hasian Silalahi, Dedi Supriyatdi, Albertus Sudirman

Abstract

Tobacco is a plant that is concerned with the quality of its leaves, damage to tobacco leaves can reduce its selling value. Caterpillars (Spodoptera litura) are pests in tobacco plants that damage the leaves of tobacco plants. Extraction from parts of the tobacco plant can be used as raw material for vegetable pesticides, extracted chopped tobacco can produce alkaloids which can be used as an insecticide to control caterpillars. The purpose of this study was to obtain the best soaking time for chopped tobacco to control caterpillars. The research was carried out in the laboratory and in fields using tobacco plants as hosts for third instar caterpillar larvae by means of contact poison. The research method used a randomized block design (RBD) with the treatment of chopped tobacco for 12, 24, 36, 48 and 62 hours with five replications. The variables observed were mortality, attack intensity and duration of pupa formation. The results showed that chopped tobacco immersion was effective against army caterpillar mortality, the soaking time of chopped tobacco could also accelerate the formation of pupae and 60 hours of immersion had the best attack intensity.

Keywords

alkaloid; attack intensity; mortality

Full Text:

PDF

References

Alegantina, S. (2017). Penetapan Kadar Nikotin dan Karakteristik Ekstrak Daun Tembakau ( Nicotiana tabacum L .) Determination of Nicotine Levels in Tobacco Leaves and Characteristics of Tobacco Leaves Extract ( Nicotiana tabacum L .). Jurnal Penelitian Dan Pengembangan Pelayanan Kesehatan, 1(2), 113–119.

Barchanska, H., Tang, J., Fang, X., Danek, M., & Joanna, P. (2021). Profiling and fi ngerprinting strategies to assess exposure of edible plants to herbicides. Food Chemistry, 335(May 2020). https://doi.org/10.1016/j.foodchem.2020.127658

Cabral, J. P., Faria, D., & Morante-Filho, J. C. (2021). Landscape composition is more important than local vegetation structure for understory birds in cocoa agroforestry systems. Forest Ecology and Management, 481(June 2020). https://doi.org/10.1016/j.foreco.2020.118704

Chandrasekaran, R., Revathi, K., Nisha, S., Kirubakaran, S. A., Sathish-narayanan, S., & Senthil-nathan, S. (2012). Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab . Pesticide Biochemistry and Physiology, 104(1), 65–71. https://doi.org/10.1016/j.pestbp.2012.07.002

Dorothy K Hatsukami, Ghazi Zaatari, and E. D. (2019). The case for the WHO Advisory Note, Global Nicotine Reduction Strategy. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1136/tobaccocontrol-2016-053134.The

Firma, M. G. (2019). Pemanfaatan ekstrak daun tembakau ( Nicotiana tabacum l ) untuk mengendalikan ulat grayak ( spodoptera litura f ) pada tanaman sawi ( Brassica juncea l .) di lapang. AGRICA: Journal of Sustainable Dryland Agriculture, 12(2), 94–101.

Garcia-perez, P., Lucini, L., & Trevisan, M. (2021). Concealed metabolic reprogramming induced by different herbicides in tomato. Plant Science, 303. https://doi.org/10.1016/j.plantsci.2020.110727

Gu, S., Zhou, J., Gao, S., Wang, D., Li, X., & Guo, Y. (2015). Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Nature Publishing Group, February, 1–17. https://doi.org/10.1038/srep13800

Hou, W., Staehelin, C., Esmail, M., Elzaki, A., Hafeez, M., Luo, Y., & Wang, R. (2021). Functional analysis of CYP6AE68 , a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura ( Lepidoptera : Noctuidae ). Pesticide Biochemistry and Physiology, 178(August), 104946. https://doi.org/10.1016/j.pestbp.2021.104946

Isman, M. B., Wan, A. J., & Passreiter, C. M. (2001). Insecticidal activity of essential oils to the tobacco cutworm , Spodoptera litura. Fitoterapia, 72, 65–68.

Khanom, S., Jang, J., & Lee, O. R. (2019). Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. Journal of Ginseng Research, 43(4), 645–653. https://doi.org/10.1016/j.jgr.2019.04.005

Mohamed, I., Eid, K. E., Abbas, M. H. H., Salem, A. A., Ahmed, N., Ali, M., Shah, G. M., & Fang, C. (2019). Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicology and Environmental Safety, 171(September 2018), 539–548. https://doi.org/10.1016/j.ecoenv.2018.12.100

Nobela, O., Ndhlala, A. R., Tugizimana, F., Njobeh, P., Raphasha, D. G., Ncube, B., & Madala, N. E. (2021). Tapping into the realm of underutilised green leafy vegetables : Using LC- IT-Tof-MS based methods to explore phytochemical richness of Sonchus. South African Journal of Botany, 000. https://doi.org/10.1016/j.sajb.2021.03.010

Nur, Y. H. (Kementerian P., & Salim, Z. (Lembaga I. P. I. (2014). Nilai the Competitiveness of Local Virginia Tobacco : a Value. Jurnal Ekonomi Dan Pembangunan, 22, 1–10.

Sharma, Y., Kaur, A., Bhardwaj, R., Srivastava, N., & Lal, M. (2021). Bioorganic Chemistry Preclinical assessment of stem of Nicotiana tabacum on excision wound model. Bioorganic Chemistry, 109(January), 104731. https://doi.org/10.1016/j.bioorg.2021.104731

Sifola, M. I., Carrino, L., Cozzolino, E., Piano, L., Graziani, G., & Ritieni, A. (2021). Potential of Pre-Harvest Wastes of Tobacco ( Nicotiana tabacum L .) Crops , Grown for Smoke Products , as Source of Bioactive Compounds ( Phenols and Flavonoids ).

Tang, C., Tsai, C., Wu, C., Lin, Y., Li, C., Wu, Y., Wei, S., & Lu, Y. (2021). MicroRNAs from Snellenius manilae bracovirus. Communications Biology, 1–11. https://doi.org/10.1038/s42003-020-01563-3

Torra, J., Rojano-delgado, A. M., Men, J., Salas, M., & Prado, R. De. (2021). Cytochrome P450 metabolism-based herbicide resistance to imazamox and 2 , 4-D in Papaver rhoeas. Plant Physiology and Biochemistry, 160, 51–61. https://doi.org/10.1016/j.plaphy.2021.01.007

Vieira, B. C., Luck, J. D., Amundsen, K. L., Werle, R., Gaines, T. A., & Kruger, G. R. (2020). Herbicide drift exposure leads to reduced herbicide sensitivity in. Scientific Reports, 2146(10), 1–11. https://doi.org/10.1038/s41598-020-59126-9

Xia, A., Biao, C., Ai, C., Yang, G., Sheng, R., Quan, H., Feng, F., Chen, M., & Ning, X. (2020). The trichome ‑ specific acetolactate synthase NtALS1 gene , is involved in acylsugar biosynthesis in tobacco ( Nicotiana tabacum L .). Planta, 1–11. https://doi.org/10.1007/s00425-020-03418-x

Zhang, J. J., & Yang, H. (2021). Metabolism and detoxi fication of pesticides in plants. Science of the Total Environment, 790(1). https://doi.org/10.1016/j.scitotenv.2021.148034

Zhang, J., Li, S., Li, W., Chen, Z., Guo, H., Liu, J., Xu, Y., Xiao, Y., Zhang, L., Arunkumar, K. P., Smagghe, G., Xia, Q., Goldsmith, M. R., Takeda, M., & Mita, K. (2021). Circadian regulation of night feeding and daytime litura. Communications Biology, 286(4), 1–11. https://doi.org/10.1038/s42003-021-01816-9

Zhang, Q., Ye, Y., Qu, Q., Yu, Y., Jin, M., Lu, T., & Qian, H. (2021). Enantioselective metabolomic modulations in Arabidopsis thaliana leaf induced by the herbicide dichlorprop. Science of the Total Environment, 797, 149015. https://doi.org/10.1016/j.scitotenv.2021.149015

Zou, X., Bk, A., Abu-izneid, T., Aziz, A., Devnath, P., Rauf, A., Mitra, S., Bin, T., Mujawah, A. A. H., Lorenzo, J. M., Mubarak, M. S., Wilairatana, P., & Suleria, H. A. R. (2021). Biomedicine & Pharmacotherapy Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste : A review. Biomedicine & Pharmacotherapy, 143(August), 112191. https://doi.org/10.1016/j.biopha.2021.112191