Respon Fisiologi Pasak Bumi (Eurycoma longifolia, Jack) di Bawah Cekaman Kekeringan

Zulfahmi Zulfahmi, Eko Irnanda, Gusrinaldi Gusrinaldi, Rita Elfianis, Rosmaina Rosmaina

Abstract

Drought stress is one of the abiotic factors that can inhibit plant growth and yield. This study aims to assess the effect of drought stress on the physiological characteristics of pasak bumi (Eurycoma longifolia, Jack). This study used a completely randomized design with two treatments, namely P0 = daily watering (control) and P1 = drought stress for two days. Each treatment consisted of 15 plants; there were 30 sample plants. Parameters observed included chlorophyll content, stomatal conductance, transpiration rate, photosynthetic rate, and Water Use Efficiency. The results of this study showed that drought stress decreased chlorophyll content (5.81%), stomatal conductance (10.34%), transpiration rate (18.73%), photosynthetic rate (3.78%), and water use efficiency (33.127%) compared to control plants. Eurycoma longifolia Jack exhibits an adaptive physiological response to drought stress, characterized by moderate reductions in chlorophyll content, photosynthesis rate, and stomatal conductance while maintaining efficient photosynthetic activity. Although water use efficiency declined significantly, the findings indicate effective compensatory mechanisms, positioning this species as a potential candidate for cultivation under water-limited conditions.

Keywords

Drought Stress, Photosynthesis Rate, Stomatal Conductance, Transpiration Rate, Water Use Efficiency

Full Text:

PDF

References

Anggraini, N., Faridah, E., & Indrioko, S. (2015). Pengaruh Cekaman Kekeringan terhadap Perilaku Fisiologis dan Pertumbuhan Bibit Black Locust (Robinia pseudoacacia). Jurnal Ilmu Kehutanan, 9(1), 40-56. https://doi.org/10.22146/jik.10183

Baccari, S., Elloumi, O., Chaari-Rkhis, A., Fenollosa, E., Morales, M., Drira, N., Ben Abdallah, F., Fki, L., & Munné-Bosch, S. (2020). Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss With Mechanisms of Photo- and Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. Frontiers in Plant Science, 11, 614144.

Cahyo, A. N., Murti, R. H., & Putra, E. T. S. (2020). Dampak Kekeringan Terhadap Proses Fisiologis, Pertumbuhan, dan Hasil Tanaman Karet (Hevea brasiliensis Mull. Arg.). Warta Perkaretan, 39(1), 57-72. https://doi.org/10.22302/ppk.wp.v39i1.664

Chaves, M. M., Costa, J. M., & Saibo, N. J. M. (2016). Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, 57, 49-104. https://doi.org/10.1016/bs.abr.2015.09.001

Chen, Y.-E., Liu, W.-J., Su, Y.-Q., Cui, J.-M., Zhang, Z.-W., Yuan, M., Zhang, H.-Y., & Yuan, S. (2016). Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 158(2), 225–235. https://doi.org/10.1111/ppl.12438

Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E. (2023). Triggers of tree mortality under drought. Nature, 615(7951), 85-90. https://doi.org/10.1038/s41586-023-05756-8

Dalal, V. K., & Tripathy, B. C. (2018). Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Scientific Reports, 8(1), 5955. https://doi.org/10.1038/s41598-017-14419-4

Dewi, S. M., Yuwariah, Y., Qosim, W. A., & Ruswandi, D. (2019). Pengaruh cekaman kekeringan terhadap hasil dan sensitivitas tiga genotip jawawut. Kultivasi, 18(3), Article 3. https://doi.org/10.24198/kultivasi.v18i3.19636

Farooq, M., Hussain, M., Ul-Allah, S., & Siddique, K. H. M. (2022). Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219, 106-123. https://doi.org/10.1016/j.agwat.2021.106123

Farrell, C., Szota, C., & Arndt, S. K. (2022). Stomatal responses to drought stress in woody plants. Frontiers in Plant Science, 13, 844-859. https://doi.org/10.3389/fpls.2022.826312

Flexas, J. (2016). Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? Plant Science, 251, 155-161. https://doi.org/10.1016/j.plantsci.2016.05.002

García-Caparrós, P., Romero, M. J., Llanderal, A., Cermeño, P., Lao, M. T., & Segura, M. L. (2019). Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species. Water, 11(3), 573. https://doi.org/10.3390/w11030573

Ghorbani, A., Razavi, S. M., Ghasemi Omran, V. O., & Pirdashti, H. (2022). Drought stress modulates secondary metabolites in medicinal plants. South African Journal of Botany, 151, 949-959. https://doi.org/10.1016/j.sajb.2022.11.016

Hamida, R., & Dewi, K. (2015). Efektivitas Mikoriza Vesikular Arbuskular dan 5-aminolevulinic Acid terhadap Pertumbuhan Jagung Varietas Lokal Madura pada Cekaman Kekeringan. Jurnal Penelitian Pertanian Tanaman Pangan, 34(1), 61–67. https://doi.org/10.21082/jpptp.v34n1.2015.p61-67

Hapsari, D. P., Poerwanto, R., Sopandie, D., Santosa, E., & Matra, D. D. (2020). Morphophysiological Changes of Mangosteen Seedling (Garcinia mangostana L.) on Polyethylene Glycol (PEG) Application. Jurnal Hortikultura Indonesia, 11(1), 1-12. https://doi.org/10.29244/jhi.11.1.1-12

Hertanto, D. M., Primiana, U., & Siregar, I. Z. (2024). Comparative drought tolerance of tropical medicinal trees: Physiological and growth responses. Journal of Tropical Forest Science, 36(1), 78-95.

Husna, N. E., Siregar, L. A. M., & Situmorang, R. F. (2022). Physiological adaptation mechanisms of medicinal plants under drought stress: A comprehensive review. Biodiversitas, 23(5), 2347-2357.

Hussain, M. S., Fareed, S., Ansari, S., Rahman, M. A., Ahmad, I. Z., & Saeed, M. (2019). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 11(2), 88–99. https://doi.org/10.4103/jpbs.JPBS_218_18

Ismail, N. A., & Jahan, M. S. (2019). Drought stress and its impact on medicinal plants. In M. Ozturk & R. Hakeem (Eds.), Plant and Human Health, Volume 2 (pp. 323-345). Springer. https://doi.org/10.1007/978-3-030-03344-6_14

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., & Ladle, R. J. (2017). Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynthesis Research, 136(3), 329–343. https://doi.org/10.1007/s11120-017-0467-7

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Frontiers in Ecology and Evolution, 6, 64. https://doi.org/10.3389/fevo.2018.00064

Meher, Shivakrishna, P., Ashok Reddy, K., & Manohar Rao, D. (2018). Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25(2), 285–289. https://doi.org/10.1016/j.sjbs.2017.04.008

Muhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Frontiers in Plant Science, 11, 2310. https://doi.org/10.3389/fpls.2020.615942

Nemeskéri, E., & Helyes, L. (2019). Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy, 9(8), 447. https://doi.org/10.3390/agronomy9080447

Purnamaningsih, R., Sari, D. N., & Kusumaningrum, D. (2023). Enhancement of bioactive compounds in Sonchus arvensis L. through controlled drought stress application. Journal of Tropical Medicinal Plants, 24(2), 89-101.

Rosmaina, R., Parjanto, P., Sobir, S., & Yunus, A. (2019). Screening of Capsicum annuum L Genotypes for Drought Tolerance Based on Drought Tolerance Indices. SABRAO Journal of Breeding and Genetics, 51(3), 205–224.

Rosmaina, R., & Zulfahmi, Z. (2013). Genetic Diversity of Eurycoma longifolia Jack Based on Random Amplified Polymorphic DNA Marker. Jurnal Manajemen Hutan Tropika, 19(2), 138–144. https://doi.org/10.7226/jtfm.19.2.138

Rosmaina, Sobir, Parjanto, & Yunus, A. (2018). Selection Criterias Development for Chilli Pepper Under Different Field Water Capacity at Vegetative Stage. Bulgarian Journal of Agricultural Science, 24(1), 80–90.

Sapeta, H., Costa, J. M., Lourenço, T., Maroco, J., van der Linde, P., & Oliveira, M. M. (2013). Drought stress response in Jatropha curcas: Growth and physiology. Environmental and Experimental Botany, 85, 76–84. https://doi.org/10.1016/j.envexpbot.2012.08.012

Sari, D. R., Wahyuni, S., & Fitmawati. (2022). Osmolyte accumulation and antioxidant defense mechanism in Phyllanthus niruri under drought stress. Asian Journal of Plant Sciences, 21(4), 345-356.

Sopandie, D. (2014). FISIOLOGI ADAPTASI TANAMAN terhadap Cekaman Abiotik pada Agroekosistem Tropika. PT Penerbit IPB Press. http://repository.ipb.ac.id/handle/123456789/81229

Subantoro, R. (2014). Pengaruh Cekaman Kekeringan Terhadap Respon Fisiologis Perkecambahan Benih Kacang Tanah (Arachis hypogaea L). MEDIAGRO: Hurnal Ilmu-Ilmu Pertanian, 10(2), 32–44. https://doi.org/10.31942/mediagro.v10i2.1587

Tátrai, Z. A., Sanoubar, R., Pluhár, Z., Mancarella, S., Orsini, F., & Gianquinto, G. (2016). Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. International Journal of Agronomy, 2016, e4165750. https://doi.org/10.1155/2016/4165750

Tran, T. V. A., Malainer, C., Schwager, S., Hung, T., Atanasov, A. G., & Heiss, E. H. (2021). The pharmacological properties of Eurycoma longifolia Jack. Molecules, 26(21), 6490. https://doi.org/10.3390/molecules26216490

Thu, H. E., Hussain, Z., Mohamed, I. N., & Shuid, A. N. (2018). Recent Advances in Antibacterial, Antiprotozoal and Antifungal Trends of Eurycoma longifolia: A Review of Therapeutic Implications and Future Prospects. Current Drug Targets, 19(14), 1657–1671. https://doi.org/10.2174/1389450119666180219123815

Winarto, B., Santosa, E., & Nurzaman, M. (2023). Stomatal behavior and photosynthetic performance of Andrographis paniculata under different drought stress levels. Journal of Agronomy and Crop Science, 209(2), 145-158.

Wu, J., Wang, J., Hui, W., Zhao, F., Wang, P., Su, C., & Gong, W. (2022). Physiology of Plant Responses to Water Stress and Related Genes: A Review. Forests, 13(2), 324.. https://doi.org/10.3390/f13020324

Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2020). Response of plant secondary metabolites to environmental factors. Molecules, 25(23), 5686. https://doi.org/10.3390/molecules25235686

Zulfahmi. (2015). Keragaman Pasak Bumi di Hutan Larangan Adat Rumbio. CV. ASA RIAU. Pekanbaru.