In Vitro Stability of Phytase from Recombinant Bacteria E. Coli BL21 (DE3) EAS1-AMP

Adi M.P. Nuhriawangsa, Sajidan Sajidan, Zaenal Bachruddin, Ali Wibowo

Abstract

The objective of the research was to inquire the Km, Vm, activity, intracellular phytase stability exposed to pH variation, temperature variation and protease (pepsin and pancreas) in vitro. The phytase was produced from recombinant bacteria E. coli BL21(DE3) EAS1-AMP using 1.5 mM IPTG as inducer. Intracellular enzyme was extracted via freeze shock and centrifugation. Pure enzyme was acquired through NI-NTA agarose column. The enzyme was then tested for Km, Vm, phytase activity and stability against pH, temperature and protease. Treatment levels for stability against protease were P0: without protease, P1: addition of pepsin, P2: addition of pepsin and pancreas, and the data were statistically analyzed using analysis of variance of one-way Completely Randomized Design. Crude intracellular phytase had Vm 6.39 υM/sec, Km 34.82 υM, and 277 units activity. Intracellular phytas was stable at pH 4–6 and 0–550 C. Protease level influenced the activity of intracellular phytase (P<0.05). Intracellular phytase was stable against pepsin but not pancreas.

Full Text:

PDF

References

Abondano, E., 2009. Enzymatic Fungtions: Protease, Amilase and Phytase. Biotechno Ebook. North Dakota State University, USA.

Anselme, P., 2006. Considerations on The Use of Microbial Phytase. CEFIC. Inorganic Feed Phosphates, Brussels.

Berka, R. M., M. W. Rey, K. M. Brown, T. Byun and A. V. Klotz, 1998. Molecular

Characterization and Expression of a Phytase Genefrom the Thermophilic Fungus Thermomyces lanuginosus. J. App. Enviro. Microbiol. 64(11):4423-4427.

Clarkson, K., B. Jones, R. Batt, B. Bower, G. Chotani, and T. Becker, 2001. Enzymes: Screening, Expression, Design and Production. In: Enzyme in Farm Animal Nutrition. M. R. Bedford and G. G. Partridge, Eds. CABI Pub., U. K.

Daniel, T. C., A. N. Sharpley and J. L. Lemunyon, 1988. Agricultural phosphorus and eurotrophication: A symphosium review. J. Enviro. Quality. 27:251-157.

David, G. R. and M. L. Thomas, 1990. Determination of Purity. In : Methods in

Enzymology : Guide to Protein Purification. M. P. Deutscher, Ed. Vol. 182. Academic Press, Toronto.

Furlan, S.A. and H.K. Pant, 2008. General Properties. In: Enzyme Technology. A. Pandey, C. Webb, C.R. Soccol and C. Larroche, Ed. N.K. Muraleedharan Asiatech Pub. Inc., Springer, New Delhi, India.

Garrett, J. B., K. A. Kretz, E. O’Donoghue, J. Kerovuo, W. Kim, N. R. Barton, G. P.

Hazlewood, J. M. Short, D. E. Robertson and K. A. Gray, 2004. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphatemobilizing monogastric-feed supplement. J. App. Enviro. Microbiol. 70(5):3041–3046.

Hendrickx, M., L. Ludikhuyze, I. Van den Broeck and C. Weemaes, 1998. Effects of high pressure on enzymes related to food quality., J. Food Sci. & Tech. 9(5):197-203.

Igbasan F. A., K. Manner, G. Miksch, R. Borriss, and A. Farouk, 2000. Comparative studies on the in vitro properties of phytases from various microbial origins J. Arch. Anim. Nutr. (4): 353 – 373.

Illanes, A., 1994. Biotechnology Enzyme. UVC, Valparafso, Chile.

Jackson, M.L. 1985. Soil Chemical Analysis. Prentice–Hall, Inc., Englewood Cliffs. NY.

Jendza, J. A., R. N. Dilger, J. S. Sands and O. Adeola, 2006. Efficacy and equivalency of an Escherichia coli-derived phytase for replacing

inorganic phosphorus in the diets of broiler chickens and young pigs. J Anim. Sci. 84:3364-3374.

Kornegay, E.T., 2001. Digestion of Phosphorus and Other Nutrients: the Role of Phytases and Factors Influencing Their Activity. In: Enzymes in Farm Animal Nutrition. M.R. Bedford and G.G. Partridge, Eds. CAB, Blacksburg, USA.

Nuhriawangsa, A. M. P., Z. Bachruddin, Sajidan and A. Wibowo, 2009. Production and characterization of Crude Intracelluler Phytase from Recombinant Bacteria pEAS1AMP. J. Indon. Tropic. Anim. Agric. 34(4):265-271.

Nuhriawangsa, A. M. P., Z. Bachruddin, Sajidan and, A. Wibowo, 2010. Cloning Phytase Gen of Klibsiella pneumonia ASR1 into E. coli BL21(DE3) and Characterization of the Enzyme. In: Proceeding Conference on Industrial Enzyme and Biotechnology 2010: Enzyme Technology for Eco-Friedly

Industry. Page: 135-143.

Phillippy, B. Q., 1999. Susceptibility of Wheat and Aspergillus niger Phytases to Inactivation by Gastrointestinal Enzymes. J. Agric. Food Chem. 47(4): 1385-1388.

Raju, K. J., U. Neogi, R. Saurnya and R. Goud, 2007. Studies on extracelluler enzyme Keratinase from Dermatophyte Microsporum gypseum. J. Biologic. Chem. 1(3):174-178.

Robyt, J. F. and B. J. White, 1997. Biochemical Tecniques Theory and Practice. Brooks/Cole Pub. Co., Monterey, California.

Sajidan, 2002. Molekulare Characterisierung einer Phytase (Myo-inositol Hexakiphosphate Hydrolase) und von Phosphatasen aus Bakterieisolaten indoneschicher Reisfelder (Klebsiella pneumoniae). Dissertation. Institut

fuer Biologie. Humboldt Universitat zu Berlin. Deutschland (Germany). Sariyska, M.V., S.A. Gargova, L.A. Koleva, A.I. Angelov, 2005. Aspergilus niger Phytase: Purification and Characterization. J. Biotechnol. and Biotechnol. Eq. 19(3): 98-105.

Shin, S., N.C. Ha, B.C. Oh, T.K. Oh and B.H. Oh, 2001. Enzyme mechanism and catalytic property of β propeller phytase. Structure. 9:851-858.

Shieh, T. R., R. J. Wodzinski and J. H. Ware, 1969. Regulation of the Formation of Acid Phosphatases by Inorganic Phosphate in Aspergillus ficuum. J. Bcteriology. XII:1161-1165.

Steel, R.G.D dan J.H. Torrie, 1993. Principles and Prosedures of Statistic. 3rd ed. B. Sumantri, Ed. P.T. Gramedia, Jakarta.

Sun, X., 2004. Broiler Performance and Intestinal Alterations when Fed Drug-free Diets. Thesis. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Tillman, A.D., H. Hartadi, S. Reksohadiprodjo, S. Prawirokusumo dan S. Lebdosoekojo, 1986. Basic Animal Nutrition. Gadjah Mada University Press, Yogyakarta.

Wang Y., X. Gao, Q. Su, W. Wu, and Lijia, 2007. Cloning, Expression, and Enzyme Characterization of an Acid Heat-Stable Phytase from Aspergillus fumigatus WY-2. J. Current Microbiol. 55(2007): 65–70.

Wu, Y. B., V. Ravidran, J. Pierce and W. H. Hendriks, 2002. Influence of three

preparation in broiler diets based on wheat or corn: In vitro measurements of nutrient release. J. Poult. Sci. 3(7): 450-455.

Wyss, M., L. Pasamontes, A. Friedlein, R. Remy, M. Tessier, A. Kronenberger, A. Middendorf, M. Lehmann, L. Schnoebelen, U. Rothlisbuis, G. Wahl, F. Muller, Hans-Werner L., K. Vogel and P. G. M. Adolphus, 1999. Biophysical characterization of fungal phytases (myo-inositol hexaisphosphat phosphohydrolases): molecular size, glycosylation pattern and engeneering

resistance. J. App. Enviro. Microbiol. 65(2):359-366.

Zale, E. and A. M. Klibanov. On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. J. Biotec. Bioengineering. 25(9):2221-2230.

Zyla, K., D. R. Leudoux and T. L. Veum, 1995. Complete enzymic dephosphorylation of corn-soybean meal feed under simulated intestinal conditions of the turkey. J. Agric. Food Chem. 43:288-294.

Refbacks

  • There are currently no refbacks.