The Effect of Citronella oil Concentration on Physicochemical Properties of Laponite Hydrogel and Antimicrobial Activity Test to Streptococcus aureus ATCC 25923 and Candida albicans ATCC 14053

Dian Eka Ermawati, Susanti Putriana, Nindita Claurisa Amaris Susanto

Abstract

Introduction: The Citronella plant produces 78 -85% citral oil. This oil has antimicrobial activity. The oil was developed as an antimicrobial topical and incorporated into laponite hydrogel for optimal use. Laponite hydrogel has a cooling sensation and is compatible with polar and non-polar active substances. This study aims to evaluate the effect of citronella oil concentration on physicochemical properties and examine its antimicrobial activity.

Methods: The Citronella plant was distilled using the steam distillation method and analyzed using the GC-MS. The laponite hydrogel was prepared with three concentrations: 6%, 8%, and 10%. Physicochemical properties included pH value, viscosity, stickiness, spreadability, and organoleptics, and the chosen formula was tested for antimicrobial activity. The research data were compared with relevant literature, and ANOVA statistics were analyzed with a confidence level of 95%.

Results: Based on the research results, increasing the concentration of citronella oil caused the laponite hydrogel to become increasingly cloudy, viscosity, and sickness but decreased the pH and spreadability. Citronella oil concentration of 8% is the chosen formula that fulfills the best hydrogel preparation with evaluation results of pH value of 7.24 ± 0.064, spreadability of 5.68 ± 0.320 cm, thickness of 1.25 ± 0.012 seconds, and viscosity of 23596.3 ± 227.55 mPa. s. The citronella oil hydrogel has antibacterial and antifungal properties and moderate strong inhibitory.

Conclution: As a delivery system for citronella oil, Laponite can be developed as a pharmaceutical preparation to treat mouth ulcers as an alternative synthetic product with good antimicrobial potential.

Keywords

citronella oil; antimicrobial; laponite hydrogel; topical preparation; physicochemical properties

Full Text:

PDF

References

  1. Paliling, A., Posangi, J., & Anindita, P. S. (2016). Uji daya hambat ekstrak bunga cengkeh (Syzygium aromaticum) terhadap bakteri Porphyromonas gingivalis. e-GiGi, 4(2). https://doi.org/10.35790/eg.4.2.2016.14159
  2. Fahdi, F., Syahdabri, H., & Sari, H. (2022). Formulasi Obat Kumur Ekstrak Daun Sereh (Cymbopogon citratus) Terhadap Pertumbuhan Bakteri Streptococcus mutans. BEST Journal (Biology Education, Sains and Technology), 5(1), 231-236.
  3. Latifah-Munirah, B., Himratul-Aznita, W. H., & Mohd Zain, N. (2015). Eugenol, an essential oil of clove, causes disruption to the cell wall of Candida albicans (ATCC 14053). Frontiers in Life Science, 8(3), 231-240. https://doi.org/10.1080/21553769.2015.1045628
  4. Sapitri, A., & Mayasari, U. (2021). Formulasi sediaan obat kumur dari infusa daun sereh wangi (Cymbopogon winterianus Jowitt ex Bor). Jurnal Health Sains, 2(3), 286-293.
  5. Adi, P., Hapsari, Y. A., Nafilah, A. N., & Arifin, Z. (2019). Jumlah Fibroblas Dan Angiogenesis Setelah Pemberian Gel Getah Jarak Cina Pada Ulserasi Tikus Wistar. E-Prodenta Journal of Dentistry, 3(1), 180-186. https://doi.org/10.21776/ub.eprodenta.2019.003.01.1
  6. Witadiana, H., Nuraeny, N., & Wahyuni, I. (2020). Tingkat pengetahuan dan sumber informasi mengenai lesi ulserasi mulut pada siswa sekolah dasar. Padjajaran J Dent Resourcher Studennt, 4(1), 27-35. https://doi.org/10.24198/pjdrs.v4i1.25655
  7. Ratman, S. H. (2019). emantauan efek samping antibiotik yang merugikan pada pasien anak yang berobat di puskesmas kecamatan pontianak timur. Jurnal Mahasiswa Farmasi Fakultas Kedokteran UNTAN, 4(1).
  8. Sandy, P. M., & Irawan, F. B. (2018). Perkembangan obat sariawan dan terapi alternatifnya. Majalah Farmasetika, 3(5), 98-101. https://doi.org/10.24198/farmasetika.v3i5.21633
  9. Anushri, M., Yashoda, R., & Puranik, M. P. (2015). Herbs: A good alternatives to current treatments for oral health problems. Dermatitis, 7, 9-12. https://doi.org/10.4103/2319-5932.147666
  10. Pierozan, R. C., Almikati, A., Araujo, G. L. S., & Zornberg, J. G. (2022). Optical and physical properties of laponite for use as clay surrogate in geotechnical models. Geotechnical Testing Journal, 45(1), 79-100. https://doi.org/10.1520/GTJ20210100
  11. Huang, X. B., Sun, J. S., Huang, Y., Yan, B. C., Dong, X. D., Liu, F., & Wang, R. (2021). Laponite: a promising nanomaterial to formulate high-performance water-based drilling fluids. Petroleum Science, 18, 579-590. https://doi.org/10.1007/s12182-020-00516-z
  12. Ghadiri, M., Hau, H., Chrzanowski, W., Agus, H., & Rohanizadeh, R. (2013). Laponite clay as a carrier for in situ delivery of tetracycline. RSC advances, 3(43), 20193-2020. https://doi.org/10.1039/c3ra43217c
  13. Tomás, H., Alves, C. S., & Rodrigues, J. (2018). Laponite®: A key nanoplatform for biomedical applications? Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 2407-2420. https://doi.org/10.1016/j.nano.2017.04.016
  14. Indonesia, S. N. (2015). Agar-agar Tepung. SNI, 2802, 2015.
  15. Garg, A., Aggarwal, D., Garg, S., & Singla, A. K. (2002). Spreading of semisolid formulations: an update. Pharmaceutical Technology North America, 26(9), 84-84.
  16. Utomo, S. B., Fujiyanti, M., Lestari, W. P., & Mulyani, S. (2018). Uji aktivitas antibakteri senyawa c-4 metoksifenilkaliks resorsinarena termodifikasi hexadecyltrimethylammonium-bromide terhadap bakteri Staphylococcus aureus dan Escherichia coli. Jurnal Kimia dan Pendidikan Kimia, 3(3), 109-209. https://doi.org/10.20961/jkpk.v3i3.22742
  17. Tivani, I., & Amananti, W. (2020). Uji Efektivitas Antifungi Perasan Daun Turi (Sesbania grandiflora (L.) Pers.) terhadap Jamur Candida albicans. PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 17(1), 35-40. https://doi.org/10.30595/pharmacy.v17i1.5867
  18. Ermawati, D. E., Yugatama, A., Ramadhani, B. R., Pertiwi, I. N. T. A. N., Rosikhoh, A. N. I. S. W. A. T. U. N., & Novachiria, S. R. (2022). Stability and antibacterial activity test of nanosilver biosynthetic hydrogel. Int J Appl Pharm, 14(2), 221-226. https://doi.org/10.22159/ijap.2022v14i2.43584
  19. Setyaningsih, D., Hambali, E., & Nasution, M. (2007). Aplikasi minyak sereh wangi (citronella oil) dan geraniol dalam pembuatan skin lotion penolak nyamuk. Jurnal teknologi industri pertanian, 17(3).
  20. Kolling, W. M. (2004). Handbook of pharmaceutical excipients. American Journal of Pharmaceutical Education, 68(1-5), BF1.
  21. Stealey, S. T., Gaharwar, A. K., & Zustiak, S. P. (2023). Laponite-based nanocomposite hydrogels for drug delivery applications. Pharmaceuticals, 16(6), 821. https://doi.org/10.3390/ph16060821
  22. Pertiwi, F. D., Rezaldi, F., & Puspitasari, R. (2022). Uji aktivitas dan formulasi sediaan liquid body wash dari ekstrak etanol bunga telang (Clitoria ternatea L) sebagai antibakteri Staphylococcus epidermidis. Jurnal Ilmiah Kedokteran dan Kesehatan, 1(1), 53-66. https://doi.org/10.55606/klinik.v1i1.257
  23. Azizah, A. V., Mulyani, S., & Suhendra, L. (2021). Mempelajari Laju Kerusakan Krim Kunyit-Lidah Buaya (Curcuma domestica Val.-Aloe vera) pada Berbagai Konsentrasi Phenoxyethanol selama Penyimpanan. J. Rekayasa Dan Manaj. Agroindustri, 9(3), 394. https://doi.org/10.24843/JRMA.2021.v09.i03.p12
  24. Tsabitah, A. F., Zulkarnain, A. K., Wahyuningsih, M. S. H., & Nugrahaningsih, D. A. A. (2020). Optimasi carbomer, propilen glikol, dan trietanolamin dalam formulasi sediaan gel ekstrak etanol daun kembang bulan (Tithonia diversifolia). Majalah Farmaseutik, 16(2), 111-118. https://doi.org/10.22146/farmaseutik.v16i2.45666
  25. Patil, S. C., Gadade, D. D., & Rathi, P. B. (2015). Design, development and evaluation of herbal gel for treatment of psoriasis. Journal of Innovations in Pharmaceuticals and Biological Sciences, 2(1), 72-87.
  26. Jatav, S., & Joshi, Y. M. (2014). Chemical stability of Laponite in aqueous media. Applied Clay Science, 97, 72-77. https://doi.org/10.1016/j.clay.2014.06.004
  27. Mursal, I. L. P., Kusumawati, A. H., & Puspasari, D. H. (2019). Pengaruh variasi konsentrasi gelling agent carbopol 940 terhadap sifat fisik sediaan gel hand sanitizer minyak atsiri daun kemangi (Ocimum Sanctum L.). Pharma Xplore: Jurnal Sains Dan Ilmu Farmasi, 4(1), 268-277. https://doi.org/10.36805/farmasi.v4i1.617
  28. Daud, N. S., & Suryanti, E. (2017). Formulasi Emulgel Antijerawat Minyak Nilam (Patchouli oil) Menggunakan Tween 80 dan Span 80 sebagai Pengemulsi dan HPMC sebagai Basis Gel. Jurnal Mandala Pharmacon Indonesia, 3(02), 90-95. https://doi.org/10.35311/jmpi.v3i02.3
  29. Isna, M. N., Amal, A. S. S., & Marfu’ah, N. (2020). Formulasi sediaan masker gel peel off dengan pati pragelatinisasi beras merah sebagai gelling agent. Pharmasipha, 4(1), 35-43. https://doi.org/10.21111/pharmasipha.v4i1.4025
  30. Putri, W. E., & Anindhita, M. A. (2022). Optimization of cardamom fruit ethanol extract gel with combination of HPMC and Sodium Alginate as the gelling agent using Simplex Lattice Design. Jurnal Ilmiah Farmasi, 107-120. https://doi.org/10.20885/jif.specialissue2022.art13
  31. Martin, A. N. (1960). Physical Pharmacy: Physical chemical principles in pharmaceutical science. Lea & Febiger.
  32. Dan. (2020). perbandingan pengujian aktivitas antibakteri starter yogurt dengan metode difusi sumuran dan metode difusi cakram comparison of the antibacterial activity of yogurt starter with disk diffusion agar and well difussion agar. Jurnal Teknologi Hasil Peternakan, 1(2), 41-46. https://doi.org/10.24198/jthp.v1i2.27537
  33. Davis, T. D., Gerry, C. J., & Tan, D. S. (2014). General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS chemical biology, 9(11), 2535-2544. https://doi.org/10.1021/cb5003015
  34. Sefriyanti, A. J., & Alimuddin, A. H. (2020). Uji Aktivitas Antibakteri Minyak Atsiri Serai Wangi (Cymbopogon bernadus L.) Terhadap Bakteri Escherichia coli dan Staphylococcus aureus. Jurnal Kimia Khatulistiwa, 8(4).

Refbacks

  • There are currently no refbacks.