Centella asiatica Mitigates NMDA Receptor Antagonist-Induced Locomotor Enhancement in Zebrafish (Danio rerio)

Wike Astrid Cahayani, Umar Jundullah Masykur, Dwi Sandhi Aulia Pramesti Putri, Nyoman Deva Pramana Giri, Naura Syifa Sakinata, Afifatur Rohmah

Abstract

Introduction: In exploring the complexities of the central nervous system and its disorders, animal models have proven indispensable for replicating human neurological conditions and investigating potential therapeutic interventions. Zebrafish, with their genetic and neurobiological similarities to mammals, have become a valuable model for studying neuroactive substances. This study aimed to assess the effects of Centella asiatica on MK-801 induced hyperactivity in zebrafish, bridging the gap between traditional herbal medicine and neuropharmacology.

Methods: An experimental design was employed, utilizing adult zebrafish acclimatized under standard laboratory conditions, divided into three groups: a control group without any treatment, a group exposed to 5 µM of MK-801, and a group treated with 5 µM of MK-801 followed by Centella asiatica extract at a concentration of 10 µg/L. Swimming velocity served as the primary measure of locomotor activity, analyzed using Ethovision XT software.

Results: The study found that MK-801 significantly increased swimming velocity in zebrafish, indicative of induced hyperactivity. Conversely, subsequent treatment with Centella asiatica notably reduced this hyperactivity, aligning swimming velocities closer to those observed in the control group.

Conclusion: Centella asiatica demonstrated significant potential to mitigate MK-801 induced hyperactivity in zebrafish, underscoring its neuroprotective properties. This research highlights the therapeutic promise of natural compounds in neuropharmacology and the utility of zebrafish as a model organism in neuroscience research. Further investigation into Centella asiatica's mechanisms of action and its application in other models of neurological disorders is warranted.

Keywords

Zebrafish; Centella asiatica; MK-801; Neuropharmacology; Hyperactivity

Full Text:

PDF

References

  1. Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel). 2023;13(7):1223. Published 2023 Mar 31. doi:10.3390/ani13071223.
  2. Kalueff A., Gebhardt M., Stewart A., Cachat J., Brimmer M., Chawla J.et al.. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013;10(1):70-86. https://doi.org/10.1089/zeb.2012.0861.
  3. Mullasseril P., Hansen K., Vance K., Ogden K., Yuan H., Kurtkaya N. et al.. A subunit-selective potentiator of nr2c- and nr2d-containing nmda receptors. Nature Communications 2010;1(1). https://doi.org/10.1038/ncomms1085.
  4. Ahn Y., Seo M., Kim S., Kim Y., Yoon S., Juhnn Y. et al.. Increased phosphorylation of ser473-akt, ser9-gsk-3β and ser133-creb in the rat frontal cortex after mk-801 intraperitoneal injection. The International Journal of Neuropsychopharmacology 2005;8(04):607. https://doi.org/10.1017/s1461145705005353.
  5. Srebro, D., Vučković, S., Vujović, K. R. S., & Prostran, M. (2014). Nitric oxide synthase modulates the antihyperalgesic effect of the nmda receptor antagonist mk-801 on carrageenan-induced inflammatory pain in rats. The Tohoku Journal of Experimental Medicine, 234(4), 287-293. https://doi.org/10.1620/tjem.234.287.
  6. Nickerson C., Brown A., Yu W., Chun Y., & Glenn M.. Prenatal choline supplementation attenuates mk-801-induced deficits in memory, motor function, and hippocampal plasticity in adult male rats. Neuroscience 2017;361:116-128. https://doi.org/10.1016/j.neuroscience.2017.07.071
  7. Holahan M., Madularu D., McConnell E., Walsh R., & DeRosa M.. Intra-accumbens injection of a dopamine aptamer abates mk-801-induced cognitive dysfunction in a model of schizophrenia. PLoS ONE 2011;6(7):e22239. https://doi.org/10.1371/journal.pone.0022239.
  8. Chen P., Wang H., Sun C., Chen M., & Chen Y.. Neurobehavioral differences of valproate and risperidone on mk-801 inducing acute hyperlocomotion in mice. Behavioural Neurology 2022;2022:1-12. https://doi.org/10.1155/2022/1048463.
  9. Hillhouse T., Merritt C., Smith D., Cajina M., Sanchéz C., Porter J. et al.. Vortioxetine differentially modulates mk-801-induced changes in visual signal detection task performance and locomotor activity. Frontiers in Pharmacology 2018;9. https://doi.org/10.3389/fphar.2018.01024.
  10. Yeo N., Muthuraju S., Wong J., Mohammed F., Senik M., Zhang J. et al.. Hippocampal amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid glua1 (ampa glua1) receptor subunit involves in learning and memory improvement following treatment with centella asiatica extract in adolescent rats. Brain and Behavior 2018;8(9). https://doi.org/10.1002/brb3.1093.
  11. Diniz L., Calado L., Duarte A., & Sousa D.. Centella asiatica and its metabolite asiatic acid: wound healing effects and therapeutic potential. Metabolites 2023;13(2):276. https://doi.org/10.3390/metabo13020276.
  12. Ariani A., Khotimah H., Sulistyarini A., Daniaridevi A.S. Centella asiatica extract ameliorates deoxygenation-induced neurological dysfunction in zebrafish larvae. Open Veterinary Journal 2024;14(5):1154. https://doi.org/10.5455/ovj.2024.v14.i5.9.
  13. Gray N., Magaña A., Lak P., Wright K., Quinn J., Stevens J., Soumyanath A. Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochemistry Reviews 2017;17(1):161-194. https://doi.org/10.1007/s11101-017-9528-y.
  14. Yuningsih R., Kusumo W.D.W.K., Mulyohadi A., Khotimah H., Nurdiana, Riawan W. et al. The effect of Centella asiatica ethanolic extract on expression of glucose transporter 1 and osteocalcin on stunting larvae of Zebrafish (Danio rerio). GSC Biological and Pharmaceutical Sciences 2022;19(03):178–189. https://doi.org/10.30574/gscbps.2022.19.3.0230
  15. Kusumo W.D.W.K., Mulyohadi A., Khotimah H., Nurdiana, Riawan W., Dianita P., et al. The effect of Centella asiatica on the vascular endothelial growth factor and vascular endothelial growth factor receptor-2 on the rotenone induced zebrafish larvae (Danio rerio) stunting model. GSC Biological and Pharmaceutical Sciences 2018;5(2):88-95. https://doi.org/10.30574/gscbps.2018.5.2.0117.
  16. Hambali A., Kumar J., Hashim N., Maniam S., Mehat M., Cheema M., Hamid H. Hypoxia-induced neuroinflammation in Alzheimer’s disease: potential neuroprotective effects of Centella asiatica. Frontiers in Physiology 2021;12. https://doi.org/10.3389/fphys.2021.712317.
  17. Matthews D., Caruso M., Magaña A., Wright K., Maier C., Stevens J. et al.. Caffeoylquinic acids in centella asiatica reverse cognitive deficits in male 5xfad alzheimer’s disease model mice. Nutrients 2020;12(11):3488. https://doi.org/10.3390/nu12113488.
  18. Hussin H., Lawi M., Haflah N., Kassim A., Idrus R., & Lokanathan Y.. Centella asiatica (l.)-neurodifferentiated mesenchymal stem cells promote the regeneration of peripheral nerve. Tissue Engineering and Regenerative Medicine 2020;17(2):237-251. https://doi.org/10.1007/s13770-019-00235-6.
  19. Puttarak P., Dilokthornsakul P., Saokaew S., Dhippayom T., Kongkaew C., Sruamsiri R. et al.. Effects of centella asiatica (l.) urb. on cognitive function and mood related outcomes: a systematic review and meta-analysis. Scientific Reports 2017;7(1). https://doi.org/10.1038/s41598-017-09823-9.
  20. Sbrini G., Brivio P., Fumagalli M., Giavarini F., Caruso D., Racagni G. et al.. Centella asiatica l. phytosome improves cognitive performance by promoting bdnf expression in rat prefrontal cortex. Nutrients 2020;12(2):355. https://doi.org/10.3390/nu12020355.

Refbacks

  • There are currently no refbacks.