Potensi Padina australis sebagai Marine Drug untuk Aterosklerosis

I Gusti Ayu Stiti Sadvika, Ni Wayan Ari Wulansari, Ni Putu Elsinthia Suryaningsih, Agung Nova Mahendra


Atherosclerosis is characterized by endothelial dysfunction, altered lipid accumulation, inflammation, and foam cells deposition. Fucoxanthin and fucoidan that are contained in Padina australis are known to have potential anti-atherosclerotic effects. This review aims to see the activity and potential of Padina australis as an anti-atherosclerotic marine drug. This literature review article was obtained through a online-based scientific database using terms or phrases relevant to the topic. Fucoxanthin reduces ROS and inhibits production of NO, PGE2, TNF-α, IL-6, and IL-1β. Meanwhile, fucoidan can regulate the development of atherosclerosis by preventing SMC from forming foam cells, LOX-1 expression, and proinflammatory molecules significantly. A decrease in total cholesterol, triglycerides, LDL, and increased HDL-c also shown to be one of the effects of fucoidan in modulating lipid metabolism. Fucoxanthin can increase thermogenesis by increasing PRDM16, UCP-1, and UCP-3 in BAT and decreasing adipocyte size, leptin, and increasing adiponectin in WAT. Fucoidan can lower the cholesterol index, triglycerides, LDL, and increase the expression of PPARγ which can increase lipid metabolism and inhibit hyperlipidemia. In conclusion, Padina australis is potential anti-atherosclerosis agent due to its fucoxanthin and  fucoidan exhibiting antioxidant, anti-inflammatory effects, and modulation of lipid metabolism.

Keywords: Padina australis, fucoxanthin, fucoidan, atherosclerosis, marine drug


Padina australis; fucoxanthin; fucoidan; aterosklerosis; marine drug

Full Text:



Kementerian Kesehatan Republik Indonesia. Pengendalian Penyakit Tidak Menular Direktorat Jenderal Pencegahan Dan Pengendalian Penyakit [serial online] 2019 [sitasi 21 November 2020]. Diunggah dari: URL:http://P2ptm.Kemkes.Go.Id/Infographic-P2ptm/Hipertensipenyakit-Jantung-Dan-Pembuluh-Darah 2. Pahwa R, Jialal I. Atherosclerosis. Treasure Island (FL): StatPearls Publishing [serial online] 2020 [sitasi 21 November 2020]. Diunggah dari: URL:https://www.ncbi.nlm.nih.gov/books/NBK507799/ 3. Linton MRF, Yancey PG, Davies, SS, Jerome WG, Linton EF, Song WL, Doran AC, VickersKC. The Role of Lipids and Lipoproteins in Atherosclerosis. South Dartmouth (MA): MDText.com [serial online] 2019 [sitasi 20 November 2020]. Diunggah dari: URL:https://www.ncbi.nlm.nih.gov/books/NBK343489/. 4. Grundy SM, Feingold KR. Guidelines for the Management of High Blood Cholesterol. Endotext South Dartmouth (MA): MDText.com [serial online] 2019 [sitasi 23 November 2020]. Diunggah dari: URL: https://www.ncbi.nlm.nih.gov/books/NBK305897/ 5. Feingold KR. Cholesterol Lowering Drugs. Endotext South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 27809434 [serial online] 2020 [sitasi 23 November 2020]. Diunggah dari: URL:https://www.ncbi.nlm.nih.gov/books/NBK395573/ 6. Peng J, Yuan JP, Yuang CF, Wu, JH, Wang. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs [serial online] 2011 [sitasi 30 September 2020];9(10):1806–1828. Diunggah dari: URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210606/pdf/marinedrugs-09-01806.pdf 7. Lilly LS. Pathophysiology of Heart Disease 6th edition. Harvard Medical School: Boston, Massachusetts [serial online] 2016 [sitasi 30 September 2020]. Diunggah dari:URL:https://www.amazon.com/Pathophysiology-Heart-Disease-Collaborative-PATHOPHYSIOLOGY/dp/1605477230. 8. Peterson CM, Lecoultre V, Frost EA, Simmons J, Redman LM, Ravussin E. The thermogenic responses to overfeeding and cold are differentially regulated. Obesity (Silver Spring) [serial online] 2016 [sitasi 17 November 2020];24(1):96-101. Diunggah dari: URL:https://pubmed.ncbi.nlm.nih.gov/26592725/ 9. Nursid M, Noviendri D, Rahayu L, Novelita V. Isolasi Fucoxanthin dari Rumput Laut Coklat Padina Australis dan Sitotoksisitasnya Terhadap Sel MCF7 dan Sel Vero. JPB Kelautan dan Perikanan [serial online] 2016 [sitasi 18 November 2020];11(1): 83-90. Diunggah dari:URL:https://www.researchgate.net/publication/314091784_ISOLASI_FUKOSANTIN_DARI_RUMPUT_LAUT_COKLAT_Padina_australis_DAN_SITOTOKSISITASNYA_TERHADAP_SEL_MCF7_DAN_SEL_VERO_Isolation_of_Fucoxanthin_from_Padina_australis_Brown_Algae_and_Its_Cytotoxicity_against 10. Chellappan D, Chellian J, Leong J, Liaw Y, Gupta G, Dua K, Kunnath A, Palaniveloo K. Biological and Therapeutic Potential of the Edible Brown Marine Seaweed Padina australis and their pharmacological mechanisms. Journal of Tropical and Biology and Conservation[serial online] 202 [sitasi 18 November 2020];17:251-71. Diunggah dari: URL:https://jurcon.ums.edu.my/ojums/index.php/jtbc/article/view/2667 11. Limantara L, Heriyanto. Optimasi proses ekstraksi fucoxanthin rumput laut coklat Padina australis Hauck menggunakan pelarut organik polar. Indonesian Journal of Marine Sciences [serial online] 2011[sitasi 22 November 2020];16(2): 86–94. Diunggah dari: URL:https://ejournal.undip.ac.id/index.php/ijms/article/view/1851 12. Yuguchi Y, Tran V, Bui L, Takebe S, Suzuki S. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydrate Polymers [serial online] 2016 [sitasi 21 Oktober 2020];147: 69-78. Diunggah dari: URL:https://pubmed.ncbi.nlm.nih.gov/27178910/ 13. Purbomartono C, Mulia D, Priyambodo D. Respons Imun Non-Spesifik Ikan Gurami (Osphronemus gouramy) yang Diberi Fucoidan dari Ekstrak Rumput Laut Cokelat Padina sp. SAINTEKS [serial online] 2019 [sitasi 21 Oktober 2020];16(1): 9-17. Diunggah dari:URL:http://jurnalnasional.ump.ac.id/index.php/SAINTEKS/article/download/7012/3005 14. Thinh P, Menshova R, Ermakova S, Anatsyuk S, Ly B, Zvyagintseva T. Structural Characteristics and Anticancer Activity of Fucoidan from the Brown Alga Sargassum mcclurei. Marine Drugs [serial online] 2013 [sitasi 21 Oktober 2020];11:1456-1476. Diunggah dari:URL:https://www.mdpi.com/1660-3397/11/5/1456/htm 15. Lutfia F, Isnansetyo A, Susidarti R, Nursid M. Chemical composition diversity of fucoidans isolated from three tropical brown seaweeds (Phaeophyceae) species. Biodiversitas [serial online] 2020 [sitasi 22 Oktober 2020]; 21(7): 3170-3177. Diunggah dari:URL:https://smujo.id/biodiv/article/view/5361 16. Ha AW, Na SJ, Kim WK. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet. Nutrition Research and Practice [serial online] 2013 [sitasi 27 September 2020];7(6):475–480. Diunggah dari: URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865270/ 17. Heo SJ, Yoon WJ, Kim KNOC, Choi YU, Yoon KT, Kang DY, Qian ZJ, Choi IW, Jung WK. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food and Chemical Toxicology [serial onlie] 2012 [sitasi 28 September 2020];50(9):3336–3342. Diunggah dari:URL:https://pubmed.ncbi.nlm.nih.gov/22735499/ 18. Tan CP, Hou YH. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells. Inflammation [serial online] 2014 [sitasi 28 September 2020];37(2):443–450. Diunggah dari:URL:https://pubmed.ncbi.nlm.nih.gov/24146106/ 19. Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY. Fucoxanthin Suppresses Lipid Accumulation and ROS Production During Differentiation in 3T3-L1 Adipocytes. Phyther Res [serial online] 2016 [sitasi 22 November 2020];30(11):1802–8. Diunggah dari:URL:https://pubmed.ncbi.nlm.nih.gov/27406217/ 20. Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. International Journal of Biological Macromolecules [serial online] 2018 [sitasi 28 September 2020];118:365–374. Diunggah dari: URL:https://europepmc.org/article/med/29906534 21. Wang X, Pei L, Liu H, Qv K, Xian W, Liu J, Zhang G. Fucoidan attenuates atherosclerosis in LDLR -/- mice through inhibition of inflammation and oxidative stress. Int J Clin Pathol [serial online] 2016 [sitasi 18 November 2020];9(7): 6896-6904. Diunggah dari:URL:http://www.ijcep.com/files/ijcep0020114.pdf 22. Cheng Y, Xudong P, Jing W. Fucoidan Inhibits NLRP3 Inflammasome Activation by Enhancing p62/SQSTM1-Dependent Selective Autophagy to Alleviate Atherosclerosis. Oxidative Medicine and Cellular Longevity [serial online] 2020 [sitasi 22 November 2020]. ID: 3186306. Diunggah dari:URL:https://www.hindawi.com/journals/omcl/2020/3186306/ 23. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine [serial online] 2013 [sitasi 22 November 2020];19(10):1338–1344. Diunggah dari:URL:https://pubmed.ncbi.nlm.nih.gov/23995282/ 24. Gille A, Stojnic B, Derwenskus F, Trautmann A, Schmid-Staiger U, Posten C, Ribot J. A Lipophilic Fucoxanthin-Rich Phaeodactylum tricornutum Extract Ameliorates Effects of Diet-Induced Obesity in C57BL/6J Mice. Nutrients [serial online] 2019 [sitasi 22 November 2020];11(4):796. Diunggah dari:URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521120/ 25. Nishikawa S, Hosokawa M, Miyashita K. Phytomedicine Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic / obese KK- A y mice. Eur J Integr Med1 [serial online] 2012 [sitasi 22 November 2020];9(5):389–94. Diunggah dari:URL:https://pubmed.ncbi.nlm.nih.gov/22305278/ 26. Park EY, Kim EH, Kim MH, Seo YW, Lee JI, Jun HS. Polyphenol-Rich Fraction of Brown Alga Ecklonia cava Collected from Gijang, Korea, Reduces Obesity and Glucose Levels in High-Fat Diet-Induced Obese Mice. Evidence-Based Complementary and Alternative Medicine [serial online] 2012 [sitasi 26 April 2020];1–11. Diunggah dari:URL:https://europepmc.org/article/med/22844333 27. Grasa-Lopez A, Miliar-Garcia A, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, Jaramillo-Flores ME. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity. Marine Drugs [serial online] 2016 [sitasi 26 Agustus 2020];14(8): 148. Diunggah dari:URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999909/ 28. Hitoe S, Shimoda H. Seaweed fucoxanthin supplementation improves obesity parameters in mildly obese Japanese subjects. Functional Foods in Health & Disease [serial online] 2017 [sitasi 22 Oktober 2020];7(4):246–262. Diunggah dari:URL:https://ffhdj.com/index.php/ffhd/article/view/333 29. Yang Z, Yin J, Wang Y, Xia B, Li T, Yang X, Hu S, Ji C, Guo S. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. International Journal of Biological Macromolecules [serial online] 2019 [sitasi 27 Agustus 2020];134:759-769. Diunggah dari:URL:https://europepmc.org/article/med/31100394 30. Park J, Yeom M, Hahm DH. Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. Journal of Pharmacological Sciences [serial online] 2019 [sitasi 27 Agustus 2020];131(2):84–92. Diunggah dari:URL:https://pubmed.ncbi.nlm.nih.gov/27094367/


  • There are currently no refbacks.