USING SENTINEL-2 IMAGE FOR MANGROVE HEALTH ANALYSIS IN BAKAU KECIL VILLAGE, MEMPAWAH DISTRICT, WEST KALIMANTAN
Abstract
This study aims to determine 1) The index of mangrove plant vegetation density, and 2) the state of the mangrove plants in the village of Bakau Kecil. Transforming the NDVI was the method employed in this study. The canopy density model can be applied using NDVI. The degree of vegetation canopy density was correlated with the intensity of greenness. The outcomes demonstrated that NDVI values ranged from -1 to 0.32, indicating sparse vegetation density, 0.33 to 0.42, indicating medium density values, and 0.43 to 1, indicating dense density values. One can categorize the condition of the mangrove vegetation based on the NDVI index value, which is shown above. Based on a vegetation index value of 0.43 - 1, which indicates very good health, mangrove vegetation can be considered to be in excellent condition. The mangrove vegetation is in good health (vegetation value 0.33-0.42, Moderate), and the vegetation is in poor health (vegetation value -1-0.32, Rare), according to the vegetation index. Mangrove health is very good, with a pixel area percentage of 68.88 percent; good health has a pixel area percentage of 23.98 percent; and poor health has a pixel area percentage of 7.14 percent.
Keywords
Full Text:
PDFReferences
Akbar, M. R., Arisanto, P. A. A., Sukirno, B. A., Merdeka, P. H., Priadhi, M. M., & Zallesa, S. (2020). Mangrove vegetation health index analysis by implementing NDVI (normalized difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. IOP Conference Series: Earth and Environmental Science, 584(1), 12069.
Andriansah, R., Ulqodry, T. Z., & Ningsih, E. N. (2020). ANALISIS KONDISI MANGROVE BERDASARKAN NDVI (NORMALIZED DIFFERENCE VEGETATION INDEX) DAN TUTUPAN KANOPI MENGGUNAKAN CITRA SENTINEL-2 DI PULAU PAYUNG, MUARA SUNGAI MUSI, BANYUASIN, SUMATERA SELATAN. Sriwijaya University.
Ardiansyah, D. M., & Buchori, I. (2014). Pemanfaatan citra satelit untuk penentuan lahan kritis mangrove di Kecamatan Tugu, Kota Semarang. Geoplanning: Journal of Geomatics and Planning, 1(1), 1–12.
Cárdenas, N. Y., Joyce, K. E., & Maier, S. W. (2017). Monitoring mangrove forests: Are we taking full advantage of technology? International Journal of Applied Earth Observation and Geoinformation, 63, 1–14.
Collins, D. S., Avdis, A., Allison, P. A., Johnson, H. D., Hill, J., Piggott, M. D., Hassan, M. H. A., & Damit, A. R. (2017). Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea. Nature Communications, 8(1), 1–12.
Danoedoro, P. (2012). Pengantar penginderaan jauh digital. Penerbit Andi, Yogyakarta.
Friess, D. A., & Webb, E. L. (2014). Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Global Ecology and Biogeography, 23(7), 715–725.
Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21). Global Ecology and Biogeography, 25(6), 729–738.
Ishtiaque, A., Myint, S. W., & Wang, C. (2016). Examining the ecosystem health and sustainability of the world’s largest mangrove forest using multi-temporal MODIS products. Science of the Total Environment, 569, 1241–1254.
Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry: An International Journal of Forest Research, 72(1), 59–74.
Jia, M., Wang, Z., Wang, C., Mao, D., & Zhang, Y. (2019). A new vegetation index to detect periodically submerged Mangrove forest using single-tide sentinel-2 imagery. Remote Sensing, 11(17), 2043.
Kamal, M., Hartono, H., Wicaksono, P., Adi, N. S., & Arjasakusuma, S. (2016). Assessment of Mangrove Forest Degradation Through Canopy Fractional Cover in Karimunjawa Island, Central Java, Indonesia. Geoplanning: Journal of Geomatics and Planning, 3(2), 107–116.
Kehutanan, D. (2005). Pedoman inventarisasi dan identifikasi lahan kritis mangrove. Direktorat Jenderal Rehabilitasi Lahan Dan Perhutanan Sosial Departemen Kehutanan. Jakarta.
Khakhima, N., Putra, A. C. P., & Widhaningtyas, T. U. (2018). ESTIMATING MANGROVE FOREST DENSITY USING GAP FRACTION METHOD AND VEGETATION TRANSFORMATION INDICES APPROACH. Geoplanning: Journal of Geomatics and Planning, 5(1), 35–42.
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of mangrove ecosystems: A review. Remote Sensing, 3(5), 878–928.
Lee, T.-M., & Yeh, H.-C. (2009). Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecological Engineering, 35(4), 487–496.
Masitha, M. (2017). Pendugaan Kerapatan Mangrove Dengan Algoritma Normalized Difference Vegetation Index (NDVI) dan Green Normalized Difference Vegetation Index (GNDVI) Michelia Masitha. Bogor Agricultural.
Noor, Y. R., Khazali, M., & Suryadiputra, I. N. N. (2006). Panduan pengenalan mangrove di Indonesia. Ditjen PHKA.
Nordhaus, I., Toben, M., & Fauziyah, A. (2019). Impact of deforestation on mangrove tree diversity, biomass and community dynamics in the Segara Anakan lagoon, Java, Indonesia: A ten-year perspective. Estuarine, Coastal and Shelf Science, 227, 106300.
Nurmalasari, I., & Santosa, S. H. M. B. (2018). Pemanfaatan Citra Sentinel-2A untuk Estimasi Produksi Pucuk Teh di Sebagian Kabupaten Karanganyar. Jurnal Bumi Indonesia, 7(1), 228868.
Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences, 113(2), 344–349.
Umarhadi, D., & Syarif, A. (2017). Regression model accuracy comparison on mangrove canopy density mapping. Intern Confer on Scien and Techn, 2(7), 1–10.
Wachid, M. N., Hapsara, R. P., Cahyo, R. D., Wahyu, G. N., Syarif, A. M., Umarhadi, D. A., Fitriani, A. N., Ramadhanningrum, D. P., & Widyatmanti, W. (2017). Mangrove canopy density analysis using Sentinel-2A imagery satellite data. IOP Conference Series: Earth and Environmental Science, 70(1), 12020.
Refbacks
- There are currently no refbacks.