Analisis lahan terbangun dan pertumbuhan penduduk di Kota Makassar menggunakan Google Earth Engine
Abstract
Urbanisasi yang pesat di Kota Makassar telah menyebabkan perubahan signifikan dalam penggunaan lahan terbangun. Penelitian ini bertujuan untuk menganalisis hubungan antara perubahan lahan terbangun dan pertumbuhan penduduk di Kota Makassar antara tahun 2000 hingga 2020. Metode penelitian menggunakan data citra satelit Landsat yang diakses melalui Google Earth Engine (GEE), dengan menerapkan Normalized Difference Built-up Index (NDBI) dan Modified Normalized Water Index (MNDWI) untuk mendeteksi area terbangun. Hasil penelitian menunjukkan adanya peningkatan signifikan pada lahan terbangun di beberapa kecamatan, terutama di Biringkanaya, Tamalanrea, dan Manggala, sejalan dengan peningkatan populasi yang signifikan di wilayah tersebut. Namun, wilayah seperti Tallo dan Tamalate, meskipun mencatat pertumbuhan penduduk yang lebih tinggi, menunjukkan tingkat perubahan lahan terbangun yang lebih rendah. Fenomena ini disebabkan oleh keterbatasan lahan kosong, tingkat kepadatan yang telah tinggi, serta prioritas pembangunan yang berbeda. Implikasi penelitian ini menunjukkan bahwa urbanisasi di Makassar perlu dikelola dengan hati-hati melalui kebijakan perencanaan ruang yang mempertimbangkan pembangunan berkelanjutan. Hasil penelitian ini diharapkan dapat menjadi referensi bagi pemerintah daerah untuk merumuskan kebijakan tata ruang yang lebih efektif dan berkelanjutan.
Keywords
Full Text:
PDFReferences
[1]Chen L, Yu L, Yin J, Xi M. Impact of Population Density on Spatial Differences in the Economic Growth of Urban Agglomerations: The Case of Guanzhong Plain Urban Agglomeration, China. Sustainability 2023;15:14601. https://doi.org/10.3390/su151914601.
[2]Tripathi S. Do Large Agglomerations Lead to Economic Ggrowth? Evidence from Urban India. Rev Urban Reg Dev Stud 2013;25:176–200. https://doi.org/10.1111/rurd.12014.
[3]Hamal S, Chauhan R, Thakuri S. Effect of Urbanization on Land Surface Temperature: A Case Study of Kathmandu Valley. Geogr Base 2022:39–52. https://doi.org/10.3126/tgb.v9i1.55427.
[4]Thapa RB, Murayama Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sens 2009;1:534–56. https://doi.org/10.3390/rs1030534.
[5]Raharti R, Burhanudin, Kartinah, Jebarus B. Economic Analysis of Urban Land Use in Yogyakarta City. IOP Conf Ser Earth Environ Sci 2022;1030:012012. https://doi.org/10.1088/1755-1315/1030/1/012012.
[6]Sukri I, Harini R, Sudrajat S. Effect of Transportation Infrastructure on Built-up Area Using Prediction of Land Use/Cover Change: Case Study of Yogyakarta International Airport, Indonesia. Indones J Geogr 2022;55:1. https://doi.org/10.22146/ijg.68216.
[7]Ningal T, Hartemink AE, Bregt AK. Land Use Change and Population Growth in the Morobe Province of Papua New Guinea between 1975 and 2000. J Environ Manage 2008;87:117–24. https://doi.org/10.1016/j.jenvman.2007.01.006.
[8]Ouedraogo I, Tigabu M, Savadogo P, Compaoré H, Odén PC, Ouadba JM. Land Cover Change and its Relation with Population Dynamics in Burkina Faso, West Africa. L Degrad Dev 2010;21:453–62. https://doi.org/10.1002/ldr.981.
[9]Temima I, Bethel G, Fikrey T. Spatio-Temporal Dynamic of Land Use and Land Cover in Andit Tid Watershed, Wet Frost/Afro-Alpine Highland of Ethiopia. Edelweiss Appl Sci Technol 2021;5:33–8. https://doi.org/10.33805/2576-8484.192.
[10]Indrianawati -, Mahdiyyah ND. Dampak Pertumbuhan Penduduk Terhadap Alih Fungsi Lahan Pertanian di Kabupaten Cirebon Tahun 2010-2016. Reka Geomatika 2020;2019. https://doi.org/10.26760/jrg.v2019i1.3706.
[11]Sukri I, Harini R. Analisis Perubahan Penggunaan Lahan di Kabupaten Kulon Progo Menggunakan Citra Landsat 7 Tahun 2011 dan Landsat 8 Tahun 2019. Semin. Nas. Geogr. IV Magister Geogr. UGM., Sept., 2021, p. 255–63.
[12]Xu H. A New Index for Delineating Built‐Up Land Features in Satellite Imagery. Int J Remote Sens 2008;29:4269–76. https://doi.org/10.1080/01431160802039957.
[13]Sun Q, Wu Z, Tan J. The Relationship between Land Surface Temperature and Land Use/Land Cover in Guangzhou, China. Environ Earth Sci 2012;65:1687–94. https://doi.org/10.1007/s12665-011-1145-2.
[14]Ghosh DK, Mandal AC, Majumder R, Patra P, Bhunia GS. Analysis for Mapping of Built-Up Area Using Remotely Sensed Indices – A Case Study of Rajarhat Block in Barasat Sadar Sub-Division in West Bengal (India). J Landsc Ecol 2018;11:67–76. https://doi.org/10.2478/jlecol-2018-0007.
[15]Zhao X, Liu J, Bu Y. Quantitative Analysis of Spatial Heterogeneity and Driving Forces of the Thermal Environment in Urban Built-up Areas: A Case Study in Xi’an, China. Sustainability 2021;13:1870. https://doi.org/10.3390/su13041870.
[16]Nie Z, Chan KKY, Xu B. Preliminary Evaluation of the Consistency of Landsat 8 and Sentinel-2 Time Series Products in An Urban Area—An Example in Beijing, China. Remote Sens 2019;11:2957. https://doi.org/10.3390/rs11242957.
[17]Khan A, Chatterjee S, Akbari H, Bhatti SS, Dinda A, Mitra C, et al. Step-wise Land-class Elimination Approach for Extracting Mixed-type Built-up Areas of Kolkata Megacity. Geocarto Int 2019;34:504–27. https://doi.org/10.1080/10106049.2017.1408704.
[18]Chandra Vaddiraju S, Bhavana K, Shaik A, Akhila R, Sreeja K. Extraction of Waterbodies using Support Vector Machine and Spectral Indices. Ecol Environ Conserv 2022:886–90. https://doi.org/10.53550/EEC.2022.v28i02.046.
[19]Szabó S, Gácsi Z, Balázs B. Specific Features of NDVI, NDWI and MNDWI as Reflected in Land Cover Categories. Landsc Environ 2016;10:194–202. https://doi.org/10.21120/LE/10/3-4/13.
[20]Ruslisan R, Zahira FS, Dharmasanti R. Prediksi Perubahan Penggunaan Lahan Terbangun Terhadap Kesesuaian Rancangan Tata Ruang Wilayah Menggunakan Regresi Logistic Binner Berdasar Data Spasial dan Penginderaan Jauh di Kota Semarang. CoUSD Proc., Semarang: 2015, p. 51–67.
[21]Mohamed MA. Monitoring of Temporal and Spatial Changes of Land Use and Land Cover in Metropolitan Regions through Remote Sensing and GIS. Nat Resour 2017;08:353–69. https://doi.org/10.4236/nr.2017.85022.
[22]Hakiki PN, Yudoyono A, Akil A. Perkembangan Urban Sprawl Kota Makassar Tahun 2008-2018. J Wil Kota Marit (Journal Reg Marit City Stud 2019;7:350–60.
[23]Leishman C, Liang W, Sim N. The Impact of Urban Population on Housing Cost: the Case of Australia. Npj Urban Sustain 2023;3:57. https://doi.org/10.1038/s42949-023-00136-7.
[24]Badan Pusat Statistik Kota Makassar. Makassar Dalam Angka 2011. Makassar: 2012.
[25]Badan Pusat Statistik Kota Makassar. Kota Makassar Dalam Angka 2021. Makassar: 2022.
[26]Fath MA. Pengaruh Kualitas Udara dan Kondisi Iklim terhadap Perekonomian Masyarakat (Literature Review). Media Gizi Kesmas 2021;10:329. https://doi.org/10.20473/mgk.v10i2.2021.329-342.
[27]Kondratyeva A, Knapp S, Durka W, Kühn I, Vallet J, Machon N, et al. Urbanization Effects on Biodiversity Revealed by a Two-Scale Analysis of Species Functional Uniqueness vs. Redundancy. Front Ecol Evol 2020;8:1–16. https://doi.org/10.3389/fevo.2020.00073.
[28]Rakhim A, Rumata NA, Damayanti R. Identification of Land Change in Makassar City. Am J Eng Res 2023;12:167–75.
[29]Ashari AF. Analisis Spasial Perubahan Penggunaan Lahan Serta Faktor-Faktor yang Mempengaruhinya (Studi Kasus Kota Makassar 2011-2019): Spatial Analysis of Land Use Changes and The Affecting Factors (Case Study of Makassar City 2011-2019). J Ecosolum 2021;10:70–81.Refbacks
- There are currently no refbacks.