Analisis Distribusi Dosis Serap Glioma Cerebri pada Gamma Knife dengan Simulasi MCNP6
Abstract
Abstract. A brain tumor (Glioma Cerebri) is an abnormal growth and division of cells in the skull cavity. There are many tumor therapies, namely surgery, chemotherapy, and radiotherapy. Gamma knife is effective radiotherapy in brain tumours and requires a careful Treatment Planning System (TPS) regarding the absorbed dose. This study reports the results of simulations using software MCNP6 by modelling tumour cells in the shape of a ball with a diameter of 1 cm and located in the centre of the brain. The source of the -radiation is the isotope Co-60, emitting from the source point with isotropically, the distance from the source to the phantom surface (SSD) is 40.1 cm. The phantom is a head and neck containing material that makes up soft tissue and bone. The proton beam guiding collimator has a size according to the helmet collimator diameter, namely 1.25 mm, 2.5 mm, 4.25 mm, and 5.3 mm. The simulation resulted in the absorbed doses in tumour cells (6.17±0.37) mGy, (10.73±0.45) mGy, (10.87±0.45) mGy, and (10.89±0.45 ) mGy. The amount of scattered dose outside the tumour cells has been measured, and the enormous value is in the brain organ with a hefty dose (25.60±1.96) mGy, (122.29±1.41) mGy, (398.20±7.75) mGy, and (597.65±6.18) mGy. Evaluation of the organ dissipated dose is in the safe category. The total irradiation time required is (40.5±2.4) minutes, (23.4±1.0) minutes, (23.0±1.0) minutes, and (22.9±0.9) minutes.
Abstrak: Tumor otak (Glioma Cerebri) merupakan suatu pertumbuhan dan pembelahan sel yang tidak wajar pada rongga tengkorak. Terdapat banyak terapi tumor yaitu pembedahan, kemoterapi, dan radioterapi. Gamma knife merupakan radioterapi yang efektif pada tumor otak dan memerlukan Treatment Planning System (TPS) yang teliti terkait dosis serap. Penelitian ini melaporkan hasil simulasi dengan software MCNP6, dengan memodelkan sel tumor berbentuk bola berdiameter 1 cm dan terletak pada pusat otak. Sumber radiasi-γ berasal dari isotop Co-60, memancar dari sumber titik dengan secara isotrop, jarak sumber ke permukaan fantom (SSD) 40,1 cm. Fantom adalah kepala dan leher berisi material penyusun jaringan lunak dan tulang. Kolimator pengarah berkas proton memiliki ukuran sesuai dengan diameter kolimator helm yaitu 1,25 mm, 2,5 mm, 4,25 mm, dan 5,3 mm. Simulasi menghasilkan dosis serap pada sel tumor adalah (6,17±0,37) mGy, (10,73±0,45) mGy, (10,87±0,45) mGy, dan (10,89±0,45) mGy. Besar dosis hambur di luar sel tumor telah diukur, nilai terbesar adalah pada organ otak dengan besar dosis (25,60±1,96) mGy, (122,29±1,41) mGy, (398,20±7,75) mGy, dan (597,65±6,18) mGy. Evaluasi pada dosis hambur pada organ adalah kategori aman. Lama waktu total penyinaran yang dibutuhkan (40,5±2,4) menit, (23,4±1,0) menit, (23,0±1,0) menit, dan (22,9±0,9) menit.
Keywords
Full Text:
PDFReferences
Bedford, J. L., Ziegenhein, P., Nill, S., & Oelfke, U. (2019). Beam selection for stereotactic ablative radiotherapy using Cyberknife with multileaf collimation. Medical Engineering and Physics, 64, 28–36. doi:10.1016/j.medengphy.2018.12.011
Benmakhlouf, H., Johansson, J., Paddick, I., & Andreo, P. (2015). Monte Carlo calculated and experimentally determined output correction factors for small field detectors in Leksell Gamma Knife Perfexion beams. Physics in Medicine and Biology, 60(10), 3959– 3973. doi:10.1088/0031-9155/60/10/3959
Comittee, R. T. (1983). 1.595446.pdf.
Firmansyah, A. F., Sunaryati, S. I., Rajagukguk, N., & Wurdiyanto, G. (2017). Penentuan Dosis Serap Air Berkas Radiasi Co-60 Pesawat Pisau Gamma Leksell Perfexion No. Seri 6428. In Seminar Keselamatan Nuklir (pp. 63–66).
Hasan, I., & Sekarutami, S. M. (2014). Standar Pengobatan Glioblastoma Multiforme, 5(2), 51–60.
Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 109, 84–101. doi:10.1016/j.addr.2015.12.012
Junios, Irhas, Novitrian, Soediatmoko, E., Haryanto, F., Su’Ud, Z., & Fielding, A. L. (2020). Investigating the impact of collimator size variation on the single beam radiation of Gamma Knife PerfexionTM based on Monte Carlo simulation. Journal of Physics: Conference Series, 1505(1). doi:10.1088/1742-6596/1505/1/012013
Laksono, B. C., & Wulansari, I. Y. (2020). AKSELERASI PENINGKATAN KESEHATAN DI INDONESIA : EFEKTIVITAS KEMOTERAPI KANKER PROSTAT DENGAN ANALISIS TINGKAT TUMOR MARKER PASIEN MENGGUNAKAN PERSAMAAN DIFFERENSIAL. Seminar Nasional Official Statistics, 2019(1), 347–356. doi:10.34123/semnasoffstat.v2019i1.23
Mahmoudi, A., & Geraily, G. (2020). EGSnrc/BEAMnrc-Based Monte Carlo Simulation of the Gamma Knife 4C versus MCNP Code in Homogeneous Media, 7(1), 33–40.
Mahmoudi, A., Geraily, G., Hadisinia, T., Shirazi, A., & Najafzadeh, M. (2020). Beam penumbra reduction of Gamma Knife machine model 4C using Monte Carlo simulation. Computer Methods and Programs in Biomedicine, 188, 105261. doi:10.1016/j.cmpb.2019.105261
Makmur, T., & Siregar, F. A. (2020). Tumor Otak Benigna Dengan Gangguan Psikiatri. Jurnal Kajian Kesehatan Masyarakat, 1(2), 74–79. Retrieved from http://ejournal.delihusada.ac.id/index.php/JK2M
Ostrom, Q. T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., & Barnholtz- Sloan, J. S. (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro-Oncology, 21, V1–V100. doi:10.1093/neuonc/noz150
Pappas, E. P., Moutsatsos, A., Pantelis, E., Zoros, E., Georgiou, E., Torrens, M., & Karaiskos, P. (2016). On the development of a comprehensive MC simulation model for the Gamma Knife Perfexion radiosurgery unit. Physics in Medicine and Biology, 61(3), 1182–1203. doi:10.1088/0031-9155/61/3/1182
Perianes, M. V. F. P., Villanueva, D. A. F., & Dungao, J. R. (2016). Monte carlo N-particle transport code simulation of leksell gamma knife using disk sources of polystyrene, PMMA, plastic water and head phantom. Philippine Journal of Science, 145(3), 271– 274.
Primadila, E., Milvita, D., Prasetio, H., Al, M., Kanie, J., Fisika, J., … Manis, L. (2020). Estimasi Dosis Radiasi 3D Energi Foton Berbasis Percentage Depth Dose ( PDD ) dan Profile Dose untuk Treatment Planning System ( TPS ) Pesawat LINAC, 9(3), 323–330.
Ramdani, R., Yani, S., Rhani, M. F., & Arif, I. (2015). Commissioning Linear Accelerator Varian Clinax iX Foton Beam 10 MV Menggunakan Simulasi Monte Carlo EGSnrc Code System, 2015(Snips), 653–656.
Reda, S. M., Massoud, E., Hanafy, M. S., Bashter, I. I., & Amin, E. A. (2006). MONTE CARLO DOSE CALCULATIONS FOR BREAST RADIOTHERAPY USING 60 Co GAMMA RAYS. Journal of Nuclear and Radiation Physics, 1(1), 61–72.
Werner, C. J., Bull, J. S., Solomon, Clell Jeffrey Jr. Brown, F. B., Mckinney, Gregg Walter Rising, M. E., Dixon, D. A., Martz, R. L., … Forster Iii, Robert Arthur Casswell, L. (2018). Mcnp 6.2, 41. Retrieved from https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-20808
Wibowo, A., Tiara, A., Sofyan, H. R., & Andriani, R. (2019). Pengaruh Hiperkoagulasi Terhadap Mortalitas, 48.
Refbacks
- There are currently no refbacks.