Perbandingan Metode Klasifikasi pada Pengolahan Citra Mata Ikan Tuna

Toni Dwi Novianto, I Made Susi Erawan

Abstract

Abstract: Fish eye color is an important attribute of fish quality. The change in eye color during the storage process correlates with freshness and has a direct effect on consumer perception. The process of changing the color of the fish eye can be analyzed using image processing. The purpose of this study was to obtain the best classification method for predicting fish freshness based on image processing in fish eyes. Three tuna fish were used in this study. The test was carried out for 20 hours with an eye image every 2 hours at room temperature. Fish eye image processing uses Matlab R.2017a software while the classification uses Weka 3.8 software. The image processing stages are taking fish eye image, segmenting ROI (region of interest), converting RGB image to grayscale, and feature extraction. Feature extraction used is the gray-level co-occurrence matrix (GLCM). The classification techniques used are artificial neural networks (ANN), k-neighborhood neighbors (k-NN), and support vector machines (SVM). The results showed the value using ANN = 0.53, k-NN = 0.83, and SVM = 0.69. Based on these results it can be determined that the best classification technique is to use the k-nearest neighbor (k-NN).

Abstrak: Warna mata ikan merupakan atribut penting pada kualitas ikan. Perubahan warna mata ikan selama proses penyimpanan berhubungan dengan tingkat kesegaran dan memiliki efek langsung pada persepsi konsumen. Proses perubahan warna mata ikan dapat dianalisis menggunakan pengolahan citra. Tujuan penelitian ini adalah mendapatkan metode klasifikasi terbaik untuk memprediksi kesegaran ikan berbasis pengolahan citra pada mata ikan. Tiga ekor ikan tuna digunakan dalam penelitian ini. Pengujian dilakukan selama 20 jam dengan pengambilan citra mata setiap 2 jam pada suhu ruang. Pengolahan citra mata ikan menggunakan software matlab R.2017a sedangkan pengklasifiannya menggunakan software Weka 3.8. Tahapan pengolahan citra meliputi pengambilan citra mata ikan, segmentasi ROI (region of interest), konversi citra RGB menjadi grayscale, dan ekstraksi fitur. Ekstraksi fitur yang digunakan yaitu gray-level co-occurrence matrix (GLCM).  Teknik klasifikasi yang digunakan yaitu, artificial neural network (ANN), k-nearest neighbors (k-NN), dan support vector machine (SVM). Hasil penelitian menunjukkan nilai korelasi menggunakan ANN = 0,53, k-NN = 0,83, dan SVM = 0,69. Berdasarkan hasil tersebut dapat disimpulkan teknik klasifikasi terbaik adalah menggunakan k-nearest neighbors (k-NN).

Keywords

GLCM, klasifikasi, mata ikan, pengolahan citra, tuna

Full Text:

PDF

References

Aulia, S., Hadiyoso, S., & Ramadan, D. N. (2015). Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 3(1), 75.

Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of food engineering, 61(1), 3-16.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Huss, H. H. (1988). Fresh fish--quality and quality changes: a training manual prepared for the FAO/DANIDA Training Programme on Fish Technology and Quality Control (No. 29). Food & Agriculture Org.

Issac, A., Dutta, M. K., Sarkar, B., & Burget, R. (2016, February). An efficient image processing based method for gills segmentation from a digital fish image. In 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 645-649). IEEE.

Kurniawan, Koko. I Made Susi Erawan, (2016). Metode Pengolahan Citra mata untuk Menentukan Kesegaran Ikan Tuna Berbasis Wavelet dan Analisis Tekstur. Seminar Nasional Tahunan XIII Hasil Penelitian Perikanan dan Kelautan. Pasca Panen (pPA – 04),137-145.

Meenal, R., & Selvakumar, A. I. (2018). Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renewable Energy, 121, 324-343.

Menesatti, P., Costa, C., & Aguzzi, J. (2010). Quality evaluation of fish by hyperspectral imaging. In Hyperspectral imaging for food quality analysis and control (pp. 273-294). Academic Press.

Nugraha, M. D., Utama, J. A., & Sulistiani, S. (2018). Implementasi Metode Random Forest Dalam Memprediksi Peristiwa Flare Di Siklus Ke-23 Dan 24 Menggunakan WEKA Data Mining. Seminar Nasional Fisika (Vol. 4, No. 1, pp. 258-263).

Rahman, A., Kondo, N., Ogawa, Y., Suzuki, T., Shirataki, Y., & Wakita, Y. (2016). Classification of fresh and spoiled Japanese dace (Tribolodon hakonensis) fish using ultraviolet–visible spectra of eye fluid with multivariate analysis. Engineering in agriculture, environment and food, 9(1), 64-69.

Rohani, A., Taki, M., & Bahrami, G. (2019). Application of artificial intelligence for separation of live and dead rainbow trout fish eggs. Artificial Intelligence in Agriculture, 1, 27-34.

Sudha, L. R., & Bhavani, R. (2012). Gait based gender identification using statistical pattern classifiers. International Journal of Computer Applications, 40(8), 30-35.

Yapar, A., & Yetim, H. (1998). Determination of anchovy freshness by refractive index of eye fluid. Food research international, 31(10), 693-695.

Refbacks

  • There are currently no refbacks.