Studi Kelajuan Elektrolit Terhadap Kapasitas Baterai Dinamis Asam Timbal Sel Tunggal

Muhammad Ghufron, Istiroyah Istiroyah, Cholisina A. Perwita, Levinus Gobay, Fakhrusy Rizki Ramadhan, Kurriawan Budi Pranata

Abstract

Abstract: Electrolyte flow rate is one of the important parameters on Redox Flow Battery (RFB) performance. A single cell lead acid battery has been made with the RFB system by giving 4 variations in flow speed (45 mL/min, 77 mL/min, 90 mL/min and 105 mL/min), two electrolyte concentrations (30% and 40%) and applied 1 A of charging-discharging current with the aim of an88ukmalyzing the relationship of the electrolyte flow rate of the battery to the RFB system capacity. The results showed that the flow of electrolytes from tanks outside the cell battery was able to increase battery capacity by increasing the number of spontaneous redox reactions during charging and discharging. The cycle time and battery capacity increase at the beginning of the filling-emptying cycle but have a downward trend with the increasing number of cycles. Batteries with an electrolyte concentration of 30% and speeds of 90 mL/mnt have the best performance in terms of discharging capacity compared to other batteries.

Abstrak: Laju aliran elektrolit adalah salah satu parameter penting pada kinerja Redox Flow Battery (RFB). Baterai asam timbal sel tunggal telah dibuat dengan sistem RFB dengan memberikan 4 variasi kelajuan aliran (45 mL/mnt, 77 mL/mnt, 90 mL/mnt dan 105 mL/mnt), dua konsentrasi elektrolit (30% dan 40 %) dan diterapkan 1 A arus pengisian-pemakaian dengan tujuan menganalisis hubungan laju aliran elektrolit baterai dengan kapasitas sistem RFB. Hasil penelitian menunjukkan bahwa aliran elektrolit dari tangki di luar baterai sel mampu meningkatkan kapasitas baterai dengan meningkatkan jumlah reaksi redoks spontan selama pengisian dan pemakaian. Waktu siklus dan kapasitas baterai meningkat pada awal siklus pengisian-pengosongan tetapi memiliki tren menurun dengan meningkatnya jumlah siklus. Baterai dengan konsentrasi elektrolit 30% dan kelajuan 90 mL/mnt memiliki kinerja terbaik dalam hal kapasitas pemakaian dibandingkan baterai lainnya.

Keywords

Asam Timbal, Energi terbarukan, Laju elektrolit, Kapasitas, Baterai

Full Text:

PDF

References

Bob Dudley. (2019). BP Statistical Review of World Energy: The 68th edition (London : BP p.l.c)

Yudiatono dkk. (2018). Outlook Energi Indonesia : Energi Berkelanjutan untuk Transportasi Darat (Jakarta : BPPT)

T. Nguyen and R. F. Savinell. (2010). Flow Batteries Electrochem. Soc. Interface Fall, 19(3), 54-56.

Satriady Aditya, Wahyu Alamsyah, Aswad Hi Saad and Sahrul Hidayat. (2016). Pengaruh Luas Elektroda Terhadap Karakteristik Baterai LiFePO4. Jurnal Materal dan Energi Indonesia, 06, 43-48.

G-J. Hwang, S-W. Kim, D-M. In, D. Y. Lee and C. H. Ryu. (2018). Application of the commercial ion exchange membranes in the all-vanadium redox flow battery. Journal of Industrial and Engineering Chemistry, 60, 360-365.

Kobra Pourabdollah. (2017). Development of electrolyte inhibitors in nickel cadmium batteries .Chemical EngineeringScience, 160, 304–312

Z. Sun dkk. (2017). Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Management, 64(1), 190-201

K. Hassan, Bakhshali M and Razieh A. (2009). Recovery of discarded sulfated lead-acid batteries by inverse charge. Journal of Energy Conversion and Management, 50, 893-898.

Wei Zhang dkk. (2018). A low-cost green approach for synthesis of lead oxide from waste lead ash for use in new lead-acid batteries. China Journal of Chemical Engineering xxx xxx-xxx

Yun Li, Shenghai Y., Pekka T., Jing H., Fangwen L., Rongbo Z., Yongming C., Chaobo T., Yuejun W., and Ari J. (2019). Novel recycling process for lead-acid battery paste without SO2 generation - Reaction mechanism and industrial pilot campaign. Journal of Cleaner Production, 217, 162-171

Piergiorgio Alotto, Massimo Guarnieri, and Federico Moro. (2014). Redox flow batteries for the storage of renewable energy: a Review Renewable and Sustainable Energy Reviews, 29, 325-335

Nur Khairati, M. Ghufron, and K. Pranata. (2018). Optimasi Kapasitas Baterai Dinamis Asam Timbal (Redox Flow Battery), SMARTICS, 4(2), 44 - 48

C.P. Zhang, S.M. Sharkh, X. Li, F.C. Walsh, C.N. Zhang, and J.C. Jiang. (2011). The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery Energy Conversion and Management, 52, 3391-3398

Muhammad Ghufron dkk. (2018). Charging Time Influence on Dynamic Lead Acid Battery Capacity with H2SO4 Electrolyte The 8th Annual Basic Science International Conference: Covarage of Basic Science Toward the World’s Sustainability Challenges AIP Conference Proceedings, 2021, 050006

F R Ramadhan, Muhammad Ghufron, Nur Khairati, Y E Setiawan, Masruroh and K B Pranata. (2019). Influence of discharge current on 3 cells dynamic lead-acid batteries performance 9th Annual Basic Science International Conference 2019 IOP Conf. Series: Materials Science and Engineering, (546) 042009

Refbacks

  • There are currently no refbacks.