Kendala Mahasiswa Calon Guru IPA Menyusun Eksplanasi Ilmiah pada Konten Listrik dan Aplikasi pada Mahluk Hidup

Tri Wahyu Agustina, Wahyuni Handayani, Roprop Latiefatul Millah

Abstract

The main objective of science education is to prepare students to synthesize and evaluate scientific explanations. Students still have difficulty using the principles of science in proving scientific claims. This study aims to identify the obstacles faced by prospective science teacher students in preparing scientific explanations for the content of Static Electricity and Applications to Living Things. Descriptive research. Purposive sampling in semester 2 A amounted to 16 students. Learning uses the premise-reasoning-outcome-visual representation strategy to develop scientific explanations. Instruments using a questionnaire include four structured questions about the facts or principles of electricity, explanations of the causes of electrical phenomena in living things, explanations of electrical phenomena, and visual representation of electricity. Data analysis uses percentages based on specific criteria. Most of the students, as much as 57%, can express facts or principles of electricity. Most students, namely 50%, cannot explain electrical phenomena in living things. As many as 57% of students can explain electrical phenomena in everyday life. Almost all students, i.e., 79%, did not experience problems visually representing electrical phenomena. The study results showed that there were still students who had problems preparing scientific explanations. The main obstacle is that students have not been able to relate the explanation of electrical phenomena to living things. The implications of the research are to equip students to integrate science content, namely Physics and Biology.

Keywords

Constraints, Electricity, Living Things, Scientific Explanation.

Full Text:

PDF

References

Bilbokaite, R. (2009). Visualization in Science Education: The Results of Pilot Research in Grade 10. Problems of Education in the 21st Century, 16, 23–29.

Budiman, I. & Yanto, E.S. (2017). Analisis Eksplanasi Ilmiah Listrik Satis Siswa SMP dari Perspektif Bahasa dalam Pengembangan Literasi Sains. Prosiding Seminar Nasional Fisika Menghilirkan Penelitian-penelitian Fisika dan Pembelajarannya, Universitas Negeri Surabaya, 144-149.

Fadilah, M., Permanasari, A., Riandi, & Maryani, E. (2020). Analisis Karakteristik Kemampuan Literasi Sains Konteks Bencana Gempa Bumi Mahasiswa Pendidikan IPA pada Domain Pengetahuan Prosedural dan Epistemi. Jurnal IPA dan Pembelajaran IPA, 4(1), 103-119.

Forgarty, R. (1991). The Mindful School: How to Integrate the Curricula. United State of America: IRI/Skylight Publishing, Inc.

Gianotti, F., Skipper, M., Tsuji, S., Bourguignon, J.P. (2021). Improving Literacy Science.Tersedia di https://es.weforum.org/events/the-davos agenda-2021/sessions/improving-science-literacy

Kementrian Pendidikan dan Kebudayaan (2017). Model Silabus Mata Pelajaran Sekolah Menengah Pertama/Madrasah Tsanawiyah (SMP/MTs) Jakarta: Kementrian Pendidikan dan Kebudayaan.

Khoiri, A.; Nasokah, Amalia, T., & Slamet H. (2020). Analisis Kritis Pendidikan Sains di Indonesia (Problematika, Solusi dan Model Keterpaduan Sains Dasar). SPEKTRA: Jurnal Kajian Pendidikan Sains, 6(1), 19-34.

Lemke, J. L. (1998). Multiplying Meaning: Visual and Verbal Semiotics in Scientific Text. In Reading Science. Tersedia di http://academic.brooklyn.cuny.edu/education/jlemke/papers/mxm syd.htm

Lestari, E., Karunia, & Yudhanegara, M.R. (2015). Penelitian Pendidikan Matematika. Bandung: PT. Refika Aditama.

Locatelli, S., Ferreira., & Arroio, A. (2010). Metavisualization: An Important Skill in The Learning Chemistry. Problems of Education in the 21st Century. 24, 75-83.

Lotadiningrat , D. (2019). Pengembangan Bahan Ajar IPA Terpadu pada Tema Kelistrikan Mahluk Hidup dengan Menggunakan Metode Four Step Teaching Material Development (4STMD). Didaktik: Jurnal Pendidikan, 5(1), 80-96.

Mayer, R.E. & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning, Educational Psychologist, 38(1), 43-52.

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

OEDC (2019). PISA 2018 Assessment and Analytical Framework. Paris: OECD Publishing Peraturan Mentri Pendidikan Nasional No. 16 tahun 2007 mengenai Standar Kualifikasi Akademik dan Kompetensi Guru. Peraturan Pemerintah nomor 19 tahun 2017 mengenai Guru.

Pratiwi, S.N., Cari, C., & AMinah, N.S. (2019). Pembelajaran IPA abad 21 dengan Literasi Sains Siswa. Jurnal Materi dan Pembelajaran Fisika, 9(1), 34-42.

Pusat Penelitian Kebijakan (2021). Risalah Kebijakan. Meningkatkan Kemampuan Literasi Dasar Siswa Indonesia Berdasarkan Analisis Data PISA 2018. Jakarta: Kementrian Pendidikan, Kebudayaan, Riset, dan Teknologi.

Rosita, A.; Leksono, S.M.; & Biru, L.T. Analisis Faktor Kesulitan Belajar IPA Konsep Kelistrikan Kelas IX SMP di Kabupaten Pandeglang. PENDIPA Journal of Science Education, 6(2), 404-409.

Shofiyah, N., Afrilia I., & Wulandari F.E. (2019). Scientific Approach and The Effect on Students Sientific Literacy. Journal of Physics: Conference

Series, 15(94), 1-6.

Tang, K. (2016). Constructing scientific explanations through premise reasoning–outcome (PRO): an exploratory study to scaffold students in structuring written explanations. International Journal of Science Education, 38(9), 1415-1440.

Tanggela, A. B. (2020). Ilmu Pengetahuan Alam (IPA) Paket B Setara SMP/MTS Kelas IX. Modul Tema 13: Listrik Dalam Kehidupan Sehari-hari. Jakarta: Kementrian Pendidikan dan Kebudayaan.

Yeo, J. & Gilbert, J. K. (2014). Constructing a Scientific Explanation -Anarrative Account. International Journal of Science Education, 36(11), 1902-1935.

Zacharia C. Z. (2005). The Impact of Interactive Computer Simulations on the Nature and Quality of Postgraduate Science Teachers’ Explanations in Physics. International Journal of Science Education, 27(14), 1741-1767.

Refbacks

  • There are currently no refbacks.