Overview Berbagai Metode Pembuatan Anodic Aluminum Oxide (AAO) dan Potensinya sebagai Katalis dalam Sintesis Dimetil Eter

Yahya Prayoga, Widya Ayu Ningsih, Tara Nabila, Anatta Wahyu Budiman

Abstract

Dimetil eter (DME) adalah suatu senyawa organik yang dapat dimanfaatkan sebagai bahan bakar. Sifat fisis dimetil eter yang menyerupai LPG menjadikan dimetil eter sebagai bahan bakar substitusi LPG. Beberapa metode pemilihan jenis reaktor telah dilakukan untuk meningkatkan performa konversi sintesis dimetil eter, diantaranya adalah fixed bed reactor, continuous stirred-tank reactor, dan coated wall reactor. Diantara katalis yang telah digunakan, Anodized Aluminium Oxide (AAO) merupakan salah satu katalis yang berpotensi digunakan untuk mempercepat reaksi sintesis dimetil eter dengan menghasilkan konversi tinggi. Review jurnal ini bertujuan untuk  menganalisis sifat katalis AAO dan metode yang paling potensial untuk mengaplikasikan pada reaktor sintesis dimetil eter.

Full Text:

PDF

References

A. J., Meyers. 2016. Obligate Methylotrophy : Evaluation of Dimethyl Ether as a C1 Compound. Issue no. June 1982.

G. Berčič dan J. Levec. 1993. Catalytic Dehydration of Methanol to Dimethyl Ether. Kinetic Investigation and Reactor Simulation. Ind. Eng. Chem. Res. Vol. 32, no. 11. hlm. 2478–2484.

T. Ogawa, N. Inoue, T. Shikada, O. Inokoshi, dan Y. Ohno. 2004. Direct Dimethyl Ether (DME) synthesis from natural gas. Stud. Surf. Sci. Catal. Vol. 147: 379–384.

R. C. Bailie dan W. B. 1998. Analysis, synthesis, and design of chemical processes. Vol. 36.

A. Karim, J. Bravo, dan A. D. Ã. 2005. Nonisothermality in packed bed reactors for steam reforming of methanol. Vol. 282: 101–109.

J. Bandiera dan C. Naccache. 1991. Kinetics of methanol dehydration on dealuminated H-mordenite: Model with acid and basic active centres. Appl. Catal. Vol. 69, no. 1: 139–148.

J. Ereña, I. Sierra, M. Olazar, A. G. Gayubo, dan A. T. Aguayo. 2008. Deactivation of a CuO - ZnO - Al2O3/γ-Al 2O3 catalyst in the synthesis of dimethyl ether. Ind. Eng. Chem. Res. Vol. 47, no. 7: 2238–2247.

B. Y. Yu, K. H. Lee, K. Kim, D. J. Byun, H. P. Ha, dan J. Y. Byun. 2011. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al 2O 3/Al prepared through the anodic oxidation of aluminum. J. Nanosci. Nanotechnol. Vol. 11, no. 7: 6298–6305.

Z. Azizi, M. Rezaeimanesh, T. Tohidian, dan M. R. Rahimpour. 2014. Dimethyl ether: A review of technologies and production challenges. Chem. Eng. Process. Process Intensif. Vol. 82: 150–172.

M. Nazir. 2003. Metode Penelitian. Jakarta.

T. H. Fleisch, A. Basu, dan R. A. Sills. 2012. Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond. J. Nat. Gas Sci. Eng. Vol. 9: 94–107.

T., G.E. 1997. Porous Anodic Alumina: Fabrication, Characterization and Applications. Thin Solid Films. Vol. 297: 192–201.

S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, dan A. Yasumori. 2006. Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization. J. Electrochem. Soc. Vol. 153, no. 9: B384.

A. K. Mukhopadhyay dan A. K. Sharma. 1997. Influence of Fe-bearing Particles and Nature of Electrolyte on The Hard Anodizing Behaviour of AA 7075 Extrusion Products. Surf. Coatings Technol. Vol. 92, no. 3: 212–220.

J. M., Runge. 2018. The Metallurgy of Anodizing Aluminum. 2018.

O. Nishinaga, T. Kikuchi, S. Natsui, dan R. O. Suzuki. 2013. Rapid Fabrication of Self-ordered Porous Alumina with 10-/sub-10-nm-scale Nanostructures by Selenic Acid Anodizing. Sci. Rep. Vol. 3: 1–6.

T. Kikuchi, O. Nishinaga, S. Natsui, dan R. O. Suzuki. 2014. Self-ordering Behavior of Anodic Porous Alumina via Selenic Acid Anodizing. Elsevier Ltd. Vol. 137.

H. Masuda, K. Yada, dan A. Osaka. 1998. Self-ordering of Cell Configuration of Anodic Prous Alumina with Large-size Pores in Phosphoric Acid Solution. Japanese J. Appl. Physics, Part 2 Lett. Vol. 37, no. 11 PART A.

G. Britain, P. Press, K. O. Ono, dan I. Science. 1992. The High Resolution Observation of Porous Anodic Films Formed on Aluminum in Phosphoric Acid Solution. Vol. 33, no. 6: 841–850.

W. Y. Zhou, Y. B. Li, Z. Q. Liu, D. S. Tang, X. P. Zou, dan G. Wang. 2001. Self-organized Formation of Hexagonal Nanopore Arrays in Anodic Alumina. Chinese Phys. Vol. 10, no. 3: 218–222.

G. D. Sulka dan W. J. Stepniowski. 2009. Structural Features of Self-organized Nanopore Arrays Formed by Anodization of Aluminum in Oxalic Acid at Relatively High Temperatures. Electrochim. Acta. Vol. 54, no. 14: 3683–3691.

S. Ono, M. Saito, and H. Asoh. 2005. Self-ordering of Anodic Porous Alumina Formed in Organic Acid Electrolytes. Electrochim. Acta. Vol. 51, no. 5: 827–833.

I. A. Vrublevsky, K. V. Chernyakova, A. Ispas, A. Bund, dan S. Zavadski. 2014. Optical Properties of Thin Anodic Alumina Membranes Formed in A Solution of Tartaric Acid. Thin Solid Films. Vol. 556: 230–235.

V. F. Surganov dan G. G. Gorokh. 2003. Anodic Oxide Cellular Structure Formation on Aluminum Films in Tartaric Acid Electrolyte. Mater. Lett. Vol. 17, no. 3–4: 121–124.

M. Pashchanka dan J. J. Schneider. 2013. Experimental Validation of The Novel Theory Explaining Self-organization in Porous Anodic Alumina Films. Phys. Chem. Chem. Phys. Vol. 15, no. 19: 7070–7074.

T. Kikuchi, D. Nakajima, J. Kawashima, S. Natsui, dan R. O. Suzuki. 2014. Fabrication of Anodic Porous Alumina via Anodizing in Cyclic Oxocarbon Acids. Appl. Surf. Sci. Vol. 313: 276–285.

K. Nielsch, J. Choi, K. Schwirn, dan R. B. Wehrspohn. 2002. Nano Letters : Self-ordering Regimes of Porous Alumina : The 10% Porosity Rule. hlm. 1–4.

H. Masuda, H. Masuda, K. Fukuda, and K. Fukuda. 1995. Ordered Metal Nanohole Arrays Made. Science (80-. ). Vol. 268: 1466–1468.

A. P. Li, F. Müller, A. Bimer, K. Nielsch, dan U. Gösele. 1998. Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-organization in Anodic Alumina. J. Appl. Phys., Vol. 84, no. 11: 6023–6026.

W. Lee, R. Ji, U. Gösele, and K. Nielsch. 2006. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. Vol. 5, no. 9: 741–747.

Refbacks

  • There are currently no refbacks.