Sintesis Carbon Nanotubes (CNT) Berbasis Bahan Alam Limbah Tempurung Kelapa dan Aplikasinya dalam Pembuatan Polimer Komposit Polimida-CNT: Review

Dini Deviana Saputri, Teguh Endah Saraswati

Abstract

Carbon nanotubes (CNT) menjadi salah satu material unggul teknologi nano yang membawa banyak keuntungan karena memiliki sifat kimia dan mekanik yang baik. Hal ini menjadikan CNT dimanfaatkan di berbagai aplikasi nano-device ataupun material komposit. Beberapa metode yang sering digunakan untuk menumbuhkan CNT adalah deposisi uap kimia (Chemical Vapor Deposition), laser ablasi dan arc discharge. Kebanyakan sumber prekursor karbon dalam sintesis CNT diambil dari bahan bakar fosil yang memiliki kelemahan bahan tidak bisa diperbaharui dan menghabiskan biaya yang mahal. Limbah bahan alam atau hasil biomassa dapat menjadi alternatif bahan baku pembuatan CNT yang membawa keunggulan biaya murah, ketersediaan melimpah, dan hemat energi, contohnya seperti limbah tempurung kelapa yang mengandung unsur karbon tinggi. Tempurung kelapa telah dilaporkan sebagai salah satu bahan baku potensial produksi CNT. Aplikasi CNT dalam polimer komposit contohnya penggabungan dengan polimida. Keunggulan polimida adalah sifat mekaniknya yang sangat baik, stabilitas termal, dan ketahanan kimia. Namun, polimida memiliki kelemahan dalam konduktivitas termal yang rendah. Penambahan CNT ke dalam polimida dapat meningkatkan konduktivitas termal sehingga meningkatkan kinerja polimer tersebut. 

Synthesis of Coconut-Shell Waste-based Carbon nanotubes (CNT) and Its Application in Polymer Composite Polyimide-CNT Fabrication: Review. Carbon nanotubes (CNTs) have become one of the excellent materials for nanotechnology which brings many advantages because of their good chemical and mechanical properties, inducing CNTs to be used in various nano-device applications or composite materials. Some of the methods commonly used to grow CNTs are chemical vapor deposition, laser ablation, and arc discharge. Most sources of carbon precursors in CNTs synthesis are taken from fossil fuels which have the disadvantages of non-renewable materials and high cost. Natural waste or biomass products can be an alternative raw material for CNTs production which brings the advantages of low cost, abundant availability, and energy-saving, for example, such as coconut shell waste which contains high carbon elements. Coconut shell has been reported as one of the potential raw materials for CNT production. CNT applications in composite polymers are for example collaboration with polyimides. The advantages of polyimides are their excellent mechanical properties and chemical resistance. However, polyimides have a disadvantage in their low thermal conductivity. The addition of CNT into polyimides can increase its thermal conductivity enhancing polyimide performance.

 

Keywords

Carbon nanotubes (CNT), Tempurung Kelapa, Polimida

Full Text:

PDF

References

Weeks M.E., 1968, Discovery of the elements. Journal of Chemical Education

Sutanti R. and Handayani S., 2013, Studi Pengaruh Jenis Dan Komposisi Katalis Pada Proses Pertumbuhan Carbon Nanotube (Cnt) Dengan Metode Catalytic Chemical Vapour Deposition (CCVD). Jurnal Teknologi Kimia dan Industri, 2 (2), 135-47.

McNaught A.D. and Wilkinson A., 1997, Compendium of chemical terminology. vol 1669: Blackwell Science Oxford)

Hidayatullah M. 2016 Studi Fisisorpsi Hidrogen Pada Karbon Aktif Dari Ampas Tebu. Institut Teknologi Sepuluh Nopember Surabaya)

Rahman T., Fadhlulloh M.A., Nandiyanto A.B.D. and Mudzakir A., 2015, Sintesis Karbon Nanopartikel. Jurnal Integrasi Proses, 5 (3).

Yu W., Xiang-Gui N., Xiu-Xi W. and Heng-An W., 2003, Effect of temperature on deformation of carbon nanotube under compression. Chinese Physics, 12 (9), 1007-10. doi: 10.1088/1009-1963/12/9/315.

Nur A., Paryanto P., Jumari A. and Dyartanti E.R., 2007, Sintesis Karbon Nanotube Dari Etanol Dengan Metode Chemical Vapor Deposition. GEMA TEKNIK Majalah Ilmiah Teknik, 10 (2), 41-6.

Sengupta J. 2018 Handbook of Nanomaterials for Industrial Applications, ed C Mustansar Hussain: Elsevier) pp 172-94.

Meyyappan M., Delzeit L., Cassell A. and Hash D., 2003, Carbon nanotube growth by PECVD: a review. Plasma Sources Science and Technology, 12 (2), 205-16. doi: 10.1088/0963-0252/12/2/312.

Kusworo T.D., Yusufina D. and Atyaforsa A., 2013, Pengaruh Katalis Co dan Fe Terhadap Karakteristik Carbon nanotubes Dari Gas Asetilena Dengan Menggunakan Proses Catalytic Chemical Vapour Deposition (CCVD). Reaktor, 14 (3), 234-41. doi: 10.14710/reaktor.14.3.234-241.

Pratama B.W. and Dwandaru W.B., 2017, Uji Karakteristik Morfologi Fisik dan Kimia Butiran Sub Micron Nanomaterial Dengan Variasi Sumber Karbon Sebagai Alat Filtrasi Sederhana. E-Journal Fisika, 6 (3), 212-21.

Andrews R., Jacques D., Rao A.M., Derbyshire F., Qian D., Fan X., Dickey E.C. and Chen J., 1999, Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters, 303 (5), 467-74. doi: https://doi.org/10.1016/S0009-2614(99)00282-1.

Manawi Y.M., Ihsanullah, Samara A., Al-Ansari T. and Atieh M.A., 2018, A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials, 11 (5), doi: 10.3390/ma11050822.

Alfarisa S., Abu Bakar S., Mohamed A., Hashim N., Kamari A., Md Isa I., Mamat M.H., Rahman Mohamed A. and Rusop Mahmood M., 2015, Carbon Nanostructures Production from Waste Materials: A Review. Advanced Materials Research, 1109, 50-4. doi: 10.4028/www.scientific.net/AMR.1109.50.

Shukla B., Saito T., Yumura M. and Iijima S., 2009, An efficient carbon precursor for gas phase growth of SWCNTs. Chemical Communications, (23), 3422-4. doi: 10.1039/B903360M.

Barnard J.S., Paukner C. and Koziol K.K., 2016, The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale, 8 (39), 17262-70. doi: 10.1039/C6NR03895F.

Wang Z., Shen D., Wu C. and Gu S., 2018, State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry, 20 (22), 5031-57. doi: 10.1039/C8GC01748D.

Janas D., 2020, From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes. Sustainability, 12 (10), doi: 10.3390/su12104115.

Azmina M.S., Suriani A.B., Salina M., Azira A.A., Dalila A.R., Asli N.A., Rosly J., Nor R.M. and Rusop M., 2012, Variety of Bio-Hydrocarbon Precursors for the Synthesis of Carbon Nanotubes. Nano Hybrids, 2, 43-63. doi: 10.4028/www.scientific.net/NH.2.43.

Gohier A., Minea T.M., Point S., Mevellec J.Y., Jimenez J., Djouadi M.A. and Granier A., 2009, Early stages of the carbon nanotube growth by low pressure CVD and PE-CVD. Diamond and Related Materials, 18 (1), 61-5. doi: https://doi.org/10.1016/j.diamond.2008.09.022.

Kwon S.-J., Seo H.-K., Ahn S. and Lee T.-W., 2019, Value-Added Recycling of Inexpensive Carbon Sources to Graphene and Carbon Nanotubes. Advanced Sustainable Systems, 3 (1), 1800016. doi: 10.1002/adsu.201800016.

Quinton B.T., Barnes P.N., Varanasi C.V., Burke J., Tsao B.-H., Yost K.J. and Mukhopadhyay S.M., 2013, A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films. Journal of Nanomaterials, 2013, 356259. doi: 10.1155/2013/356259.

Williams P.T., 2020, Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste and Biomass Valorization, doi: 10.1007/s12649-020-01054-w.

Liu X., Shen B., Wu Z., Parlett C.M.A., Han Z., George A., Yuan P., Patel D. and Wu C., 2018, Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst. Chemical Engineering Science, 192, 882-91. doi: https://doi.org/10.1016/j.ces.2018.07.047.

Endo M., Takeuchi K., Igarashi S., Kobori K., Shiraishi M. and Kroto H.W., 1993, The production and structure of pyrolytic carbon nanotubes (PCNTs). Journal of Physics and Chemistry of Solids, 54 (12), 1841-8. doi: https://doi.org/10.1016/0022-3697(93)90297-5.

Araga R. and Sharma C.S., 2017, One step direct synthesis of multiwalled carbon nanotubes from coconut shell derived charcoal. Materials Letters, 188, 205-7. doi: https://doi.org/10.1016/j.matlet.2016.11.014.

Pambayun G.S., Yulianto R.Y., Rachimoellah M. and Putri E.M., 2013, Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator ZnCl2 dan Na2CO3 sebagai adsorben untuk mengurangi kadar fenol dalam air limbah. Jurnal Teknik ITS 2(1), F116-F20.

Halder G., Khan A.A. and Dhawane S., 2016, Fluoride Sorption Onto a Steam-Activated Biochar Derived From Cocos nucifera Shell. Clean Soil Air Water, 44 (2), 124-33. doi: 10.1002/clen.201400649.

Raveendran K., Ganesh A. and Khilar K.C., 1995, Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74 (12), 1812-22. doi: https://doi.org/10.1016/0016-2361(95)80013-8.

Rampe M.J., Setiaji B., Trisunaryanti W. and Triyono T., 2011, Fabrication and characterization of carbon composite from coconut shell carbon. Indonesian Journal of Chemistry, 11 (2), 7 doi: 10.22146/ijc.21398.

Wiratmoko A. and Halloran J.W., 2009, Fabricated carbon from minimally processed coke and coal tar pitch as a carbon-sequestering construction material. Journal of Materials Science, 44 (8), 2097-100. doi: 10.1007/s10853-008-3174-0.

Rantitsch G., Grogger W., Teichert C., Ebner F., Hofer C., Maurer E.-M., Schaffer B. and Toth M., 2004, Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. International Journal of Earth Sciences, 93 (6), 959-73. doi: 10.1007/s00531-004-0436-1.

Kang Z., Wang E., Gao L., Lian S., Jiang M., Hu C. and Xu L., 2003, One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite. Journal of the American Chemical Society, 125 (45), 13652-3. doi: 10.1021/ja037399m.

Adewumi G.A., Inambao F., Eloka-Eboka A. and Revaprasadu N., 2018, Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth. Journal of Electronic Materials, 47 (7), 3788-94. doi: 10.1007/s11664-018-6248-z.

Jiang Q., Tallury S.S., Qiu Y. and Pasquinelli M.A., 2020, Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation. Nanotechnology Reviews, 9 (1), 136-45.

Roy A., Mu L. and Shi Y., 2020, Tribological properties of polyimide coating filled with carbon nanotube at elevated temperatures. Polymer Composites, 41 (7), 2652-61. doi: 10.1002/pc.25564.

Chao M., Li Y., Wu G., Zhou Z. and Yan L., 2019, Functionalized Multiwalled Carbon Nanotube-Reinforced Polyimide Composite Films with Enhanced Mechanical and Thermal Properties. International Journal of Polymer Science, 2019, 9302803. doi: 10.1155/2019/9302803.

Kim P., Shi L., Majumdar A. and McEuen P.L., 2001, Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters, 87 (21), 215502. doi: 10.1103/PhysRevLett.87.215502.

Aseel A.K., 2017, Preparation and electrical properties of polyimide/carbon nanotubes composites. Materials Science-Poland, 35 (4), 755-9. doi: https://doi.org/10.1515/msp-2017-0096.

Mo T.-C., Wang H.-W., Chen S.-Y. and Yeh Y.-C., 2008, Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polymer composites, 29 (4), 451-7. doi: 10.1002/pc.20468.

Lin T., Bajpai V., Ji T. and Dai L., 2003, Chemistry of Carbon Nanotubes Australian Journal of Chemistry, 56 (7), 635-51. doi: https://doi.org/10.1071/CH02254.

Kim B.S., Bae S.H., Park Y. and Kim J., 2006, Polyimide/Carbon Nanotubes Composite Films: A Potential for FPCB, 2006 International Conference on Nanoscience and Nanotechnology, 3-7 July 2006, 2150-3605

Delozier D., Tigelaar D., Watson K., Smith Jr J., Lillehei P. and Connell J., 2004, Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation.

OKTAY B., TÜRKER S., KARATAŞ S. and APOHAN N.J.J.o.t.T.C.S.S.A.C., 2018, Multi-Walled Carbon Nanotube Reinforced Polyimide Composites. Journal of the Turkish Chemical Society Section A Chemistry, 5 (1), 283-94.

So H.H., Cho J.W. and Sahoo N.G., 2007, Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. European Polymer Journal, 43 (9), 3750-6. doi: https://doi.org/10.1016/j.eurpolymj.2007.06.025.

Ausman K.D., Piner R., Lourie O., Ruoff R.S. and Korobov M., 2000, Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes. The Journal of Physical Chemistry B, 104 (38), 8911-5. doi: 10.1021/jp002555m.

Wang J., Jin X., Wu H. and Guo S., 2017, Polyimide reinforced with hybrid graphene oxide @ carbon nanotube: Toward high strength, toughness, electrical conductivity. Carbon, 123, 502-13. doi: https://doi.org/10.1016/j.carbon.2017.07.055.

박수진, Chae S.-W., 이종문 and 강신재, 2010, A Study on Electrical and Thermal Properties of Polyimide/MWNT Nanocomposites. Bulletin of the Korean Chemical Society, 31 (8), 2279-82. doi: 10.5012/BKCS.2010.31.8.2279.

Min C., Liu D., He Z., Li S., Zhang K. and Huang Y., 2018, Preparation of novel polyimide nanocomposites with high mechanical and tribological performance using covalent modified carbon nanotubes via Friedel-Crafts reaction. Polymer, 150, 223-31. doi: https://doi.org/10.1016/j.polymer.2018.07.035.

Refbacks

  • There are currently no refbacks.