Sintesis Carbon Nanotube (CNT) Menggunakan Prekursor Bahan Alam Serta Modifikasi CNT Sebagai Komposit CNT/Resin Epoksi: Review

Putri Ayu Anggoro, Teguh Endah Saraswati


Carbon Nanotube (CNT) memiliki aplikasi potensial yang luas karena sifat kimia dan fisiknya yang sangat baik. CNT disintesis menggunakan prekursor cair dari bahan alam yang. Prekursor cair dari bahan alam dimungkinkan dapat mengganti prekursor berbasis minyak bumi. Minyak kamper, jarak, kayu putih, dan kelapa sawit digunakan sebagai reservoir karbon untuk menghasilkan CNT berdinding banyak (MWCNT). Berbagai metode telah digunakan untuk menghasilkan CNT, termasuk ablasi laser, arc discharge dan proses deposisi uap kimia (CVD). Ulasan ini menjelaskan pembuatan CNT menggunakan metode CVD dikarenakan metode ini adalah metode yang umum digunakan dan sederhana. MWCNT yang dihasilkan dimodifikasi untuk membentuk komposit dengan resin epoksi.

Synthesis of Carbon Nanotubes (CNT) Using Natural Material Precursors and Modified CNTs as CNT/Epoxy Resin Composite: Review. Carbon Nanotubes (CNT) have wide potential applications due to their excellent chemical and physical properties. CNTs were synthesized using liquid precursors from natural materials possibly replacing petroleum-based precursors. Camphor, jatropha, eucalyptus oil, and palm oil are used as carbon reservoirs to produce multi-walled carbon nanotubes (MWCNT). A variety of methods have been used to produce CNTs, including laser ablation, arc discharge, and chemical vapor deposition (CVD) processes. This mini-review explained the manufacture of CNTs using the CVD method as a commonly used and simple method. The synthesized CNT is then modified to be applied to form a composite with epoxy resin


Carbon Nanotube, CNT modification, composite, epoxy resin

Full Text:



Sato, H., Sano, M., 2008, Characteristics of Ultrasonic Dispersion of Carbon Nanotubes Aided By Antifoam, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1-3), 103-107.

Raji, K., Thomas, S., Sobhan, C. B., 2011, A Chemical Kinetic Model for Chemical Vapor Deposition of Carbon Nanotubes, Applied Surface Science, 257(24), 10562-10570.

Lee, Y. T., Park, J., Choi, Y. S., Ryu, H., Lee, H. J., 2002, Temperature-Dependent Growth Of Vertically Aligned Carbon Nanotubes In The Range 800− 1100° C, The Journal of Physical Chemistry B, 106(31), 7614-7618.

Pillay, K., Cukrowska, E. M., Coville, N. J., 2009, Multi-Walled Carbon Nanotubes as Adsorbents for the Removal of Parts per Billion Levels of Hexavalent Chromium From Aqueous Solution, Journal of Hazardous Materials, 166(2-3), 1067-1075.

Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Kizek, R., 2011, Methods for Carbon Nanotubes Synthesis, Journal of Materials Chemistry, 21(40), 15872-15884.

Afolabi, A. S., Abdulkareem, A. S., Iyuke, S. E., 2007, Synthesis Of Carbon Nanotubes and Nanoballs By Swirled Floating Catalyst Chemical Vapour Deposition Method, Journal of Experimental Nanoscience, 2(4), 269-277.

Nagaraju, N., Fonseca, A., Konya, Z., Nagy, J. B., 2002, Alumina and Silica Supported Metal Catalysts for the Production of Carbon Nanotubes, Journal of Molecular Catalysis A: Chemical, 181(1-2), 57-62.

Łamacz, A., 2019, CNT and H2 Production during CH4 Decomposition Over Ni/Cezro2. I. A Mechanistic Study, Chemengineering, 3(1), 26.

Kumar, M., Ando, Y., 2003, Single-Wall and Multi-Wall Carbon Nanotubes from Camphor—A Botanical Hydrocarbon, Diamond and Related Materials, 12(10-11), 1845-1850.

Ghosh, P., Afre, R. A., Soga, T., Jimbo, T., 2007, A Simple Method of Producing Single-Walled Carbon Nanotubes From A Natural Precursor: Eucalyptus Oil, Materials Letters, 61(17), 3768-3770.

Awasthi, K., Kumar, R., Raghubanshi, H., Awasthi, S., Pandey, R., Singh, D., Srivastava, O. N., 2011, Synthesis of Nano-Carbon (Nanotubes, Nanofibres, Graphene) Materials, Bulletin of Materials Science, 34(4), 607.

Jagtap, S. B., Ratna, D., 2013, Preparation and Characterization of Rubbery Epoxy/Multiwall Carbon Nanotubes Composites Using Amino Acid Salt Assisted Dispersion Technique, Express Polymer Letters, 7(4).

Moniruzzaman, M., Winey, K. I., 2006, Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules, 39(16), 5194-5205.

Ma, P. C., Mo, S. Y., Tang, B. Z., Kim, J. K., 2010, Dispersion, Interfacial Interaction and Re-Agglomeration of Functionalized Carbon Nanotubes In Epoxy Composites. Carbon, 48(6), 1824-1834.

Kumar, M., Ando, Y., 2010, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, 10(6), 3739-3758.

Esteves, L. M., Oliveira, H. A., Passos, F. B., 2018, Carbon Nanotubes As Catalyst Support In Chemical Vapor Deposition Reaction: A Review, Journal of Industrial and Engineering Chemistry, 65, 1-12.

Ye, X. R., Lin, Y., Wang, C., Engelhard, M. H., Wang, Y., Wai, C. M., 2004, Supercritical Fluid Synthesis and Characterization of Catalytic Metal Nanoparticles on Carbon Nanotubes, Journal of Materials Chemistry, 14(5), 908-913.

Öncel, Ç., Yürüm, Y., 2006, Carbon Nanotube Synthesis Via The Catalytic CVD Method: A Review on The Effect of Reaction Parameters, Fullerenes, Nanotubes, And Carbon Nonstructures, 14(1), 17-37.

Li, Y., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Wang, Q., 2004, Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes By A Plasma Enhanced CVD Method, Nano Letters, 4(2), 317-321.

Igbokwe, E. C., Daramola, M. O., Iyuke, S. E., 2019, Production of Carbon Nanotube Yarns Via Floating Catalyst Chemical Vapor Deposition: Effect Of Synthesis Temperature On Electrical Conductivity, Results In Physics, 15, 102705.

Janas, D., Koziol, K. K., 2016, Carbon Nanotube Fibers and Films: Synthesis, Applications and Perspectives of the Direct-Spinning Method, Nanoscale, 8(47), 19475-19490.

Bagheri, H., Hashemipour, H., 2018, Comparison of Two Methods of Carbon Nanotube Synthesis: CVD and Supercritical Process (A Review), Int. J. Bio-Inorg. Hybr. Nanomater, 7(3), 199-204.

Jourdain, V., Bichara, C., 2013, Current Understanding of the Growth of Carbon Nanotubes in Catalytic Chemical Vapour Deposition, Carbon, 58, 2-39.

Seo, J. W., Magrez, A., Milas, M., Lee, K., Lukovac, V., Forró, L., 2007, Catalytically Grown Carbon Nanotubes: From Synthesis To Toxicity, Journal of Physics D: Applied Physics, 40(6), R109.

Shamsudin, M. S., Mohammad, M., Zobir, S. A. M., Asli, N. A., Bakar, S. A., Abdullah, S., Mahmood, M. R., 2013, Synthesis and Nucleation-Growth Mechanism of Almost Catalyst-Free Carbon Nanotubes Grown From Fe-Filled Sphere-Like Graphene-Shell Surface, Journal of Nanostructure In Chemistry, 3(1), 13.

Suriani, A. B., Azira, A. A., Nik, S. F., Nor, R. M., Rusop, M., 2009, Synthesis of Vertically Aligned Carbon Nanotubes Using Natural Palm Oil As Carbon Precursor, Materials Letters, 63(30), 2704-2706.

Yang, K., Gu, M., Guo, Y., Pan, X., Mu, G., 2009, Effects of Carbon Nanotube Functionalization On The Mechanical and Thermal Properties of Epoxy Composites, Carbon, 47(7), 1723-1737.

Kim, Y. J., Shin, T. S., Do Choi, H., Kwon, J. H., Chung, Y. C., Yoon, H. G., 2005, Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/Epoxy Composites, Carbon, 43(1), 23-30.


  • There are currently no refbacks.