PIROLISIS CAMPURAN BIOMASSA LIMBAH SEKAM PADI DAN LIMBAH PLASTIK LOW DENSITY POLYETHYLENE MENGGUNAKAN KOMPOR BIOMASSA
Abstract
The demand for fuel oil is increasing day by day, resulting in the depletion of oil and gas reserves in Indonesia. Rice husk waste biomass and low-density polyethylene plastic are wastes that can be utilized as alternative fuel sources by pyrolysis method. Pyrolysis is the process of burning organic and synthetic materials in conditions of little or no oxygen by utilizing heat from high temperature combustion. Pyrolysis method processing requires a heater to burn the material during the process. Efforts that can be made are the use of biomass stoves as the right solution because of the availability of abundant and cheap raw materials, biomass stoves can also provide solutions to reduce the impact of environmental pollution smoke. The purpose of this study was to determine the temperature produced by the biomass stove and the effect of the comparison of the composition of the biomass mixture of rice husk waste and low density polyethylene plastic waste on the quantity of pyrolysis oil. This research uses experimental method with quantitative descriptive analysis technique. This research was conducted by pyrolyzing a mixture of rice husk biomass waste and low density polyethylene plastic waste with variations in composition ratio of 0%:100%, 25%:75%, 50%:50%, 75%:25%, and 100%:0%. The pyrolyzed oil was then filtered and tested for quantity. The test results show that the biomass stove can be used as a heater in a pyrolysis device with a capacity of 4 kg of coconut shell briquettes. The use of coconut shell briquettes as fuel has the advantage of being able to produce higher heat and last longer than charcoal. The biomass stove can produce the highest pyrolysis temperature reaching 665.5°C at the bottom, 541°C in the middle, and 430.3°C at the top. There is an effect of variation in the composition of the mixture of rice husk waste and low-density polyethylene plastic waste on the quantity of pyrolysis oil. The composition of more rice husk waste compared to low density polyethylene plastic waste produces less quantity of pyrolysis oil, while the comparison of the composition of more low density polyethylene plastic waste compared to rice husk waste produces pyrolysis oil with more quantity. This can be seen from the quantity of pyrolysis oil produced ranging from 265 ml to 853.3 ml.
Keywords
Full Text:
PDFReferences
Anggara, M., Mesa, A. P., & Mbulu, B. C. P. (2022). Analisis Properti Bahan Bakar Minyak dari Plastik LDPE (Low Density Polyethylene) dan PET (Polyethylene Terephthalate) menggunakan Proses Pirolisis. JETM: Jurnal Energi Dan Teknologi Manufaktur, 5(02), 1–10. https://doi.org/https://doi.org/10.33795/jetm.v5i02.138 Bow, Y., Lestari, S. P., Sihombing, S. R., Kharissa, S. A., & Salam, Y. A. (2018). Pengolahan Sampah Low Density Polyethylene (LDPE) dan Polypropylene (PP) Menjadi Bahan Bakar Cair Alternatif menggunakan Prototipe Pirolisis. Jurnal Kinetika, 9(03), 1–6. https://jurnal.polsri.ac.id/index.php/kimia/index Fatimura, M. (2020). Evaluasi Kinerja Reaktor Pirolisis Non Katalis Dalam Mengkonversikan Limbah Plastik Menjadi Bahan Bakar Minyak. Jurnal Ilmiah Teknik Kimia, 4(1), 1. https://doi.org/10.32493/jitk.v4i1.3725 Gobel, A. P., & Arief, A. T. (2022). Teknologi Pirolisis Pembuatan Asap Cair dari Sekam Padi. Prima Abdika: Jurnal Pengabdian Masyarakat, 2(4), 427–434. https://doi.org/10.37478/abdika.v2i4.2201 Hanandito, L., & Willy, S. (2011). Pembuatan Briket Arang Tempurung Kelapa dari Sisa Bahan Bakar Pengasapan Ikan Kelurahan Bandarharjo Semarang. Teknik Kimia, 2(1), 1–9. http://eprints.undip.ac.id/36696/1/3.Artikel_Ilmiah.pdf Kamba, M., & Djafar, R. (2019). Kompor Biomassa Sistem Batch menggunakan Bahan Bakar Sekam Padi. Jurnal Teknologi Pertanian Gorontalo (JTPG), 4(1), 15–25. https://doi.org/10.30869/jtpg.v4i1.339 Kementerian Energi dan Sumber Daya Mineral. (2020). Rencana Strategis DITJEN MIGAS 2020 - 2024. https://migas.esdm.go.id/uploads/informasi-publik/laporan-kierja/rev-1---rencana-strategis-2020-2024.pdf Kurniawan, A., Basuki, & Irfài, M. A. (2021). Analisis jumlah volume bahan bakar yang dihasilkan pada alat pirolisis sampah plastik tipe LDPE. ARMATUR, 2(1), 1–6. https://doi.org/http://dx.doi.org/10.24127/armatur.v2i1.338 Nugroho, A. S. (2020). Pengolahan Limbah Plastik LDPE dan PP untuk Bahan Bakar dengan Cara Pirolisis. Jurnal Litbang Sukowati : Media Penelitian Dan Pengembangan, 4(1), 91–100. https://doi.org/10.32630/sukowati.v4i1.166 Nurulita, B., Daulay, S. H., Saputra, A., Gunawan, F. A., Rizka, V., Sutrisno, J., & Silitonga, A. S. (2021). Design of Conversion Tools of Plastic Waste and Coconut Coconuts to be Alternative Fuel using Pirolysis Method. SINERGI: Jurnal Ilmiah Teknik Mesin Polmed, 2(2), 28–36. https://doi.org/https://doi.org/10.51510/sinergipolmed.v2i2.22 Octavian, I., Wijayanto, D. S., & Saputra, T. W. (2022). Analisis Minyak Hasil Pirolisis Biomassa Limbah Aren dan Limbah Plastik Polypropylene terhadap Kuantitas Minyak Hasil Pirolisis. Jurnal Momentum, 18(2), 144–150. https://doi.org/http://dx.doi.org/10.36499/jim.v18i2.7026 Rahmadanty, N. (2022). Pirolisis Sampah Plastik Jenis Low Density Polyethylene (LDPE) menggunakan Katalis Pasir Merapi sebagai Alternatif Bahan Bakar Minyak (BBM) [Universitas Islam Indonesia]. https://dspace.uii.ac.id/handle/123456789/41527 Saparudin, Syahrul, & Nurcahyati. (2015). Pengaruh Variasi Temperatur Pirolisis terhadap Kadar Hasil dan Nilai Kalor Briket Campuran Sekam Padi-Kotoran Ayam. Dinamika Teknik Mesin, 5(1), 16–24. https://doi.org/http://dx.doi.org/10.29303/d.v5i1.46 Wibowo, S. (2015). Karakteristik Bio-Oil dari Limbah Industri Hasil Hutan menggunakan Pirolisis Cepat (Characteristics of Bio-oil of Forest Products Waste by Fast Pyrolysis Made Process). JURNAL Penelitian Hasil Hutan, 34(1), 61–76. https://doi.org/https://doi.org/10.20886/jphh.2016.34.1.61-76 Wijayanti, H., Ratnasari, D., & Hakim, R. (2020). Studi Kinetika Pirolisis Sekam Padi untuk Menghasilkan Bio-oil sebagai Energi Alternatif. Buletin Profesi Insinyur, 3(2), 83–88. https://doi.org/10.20527/bpi.v3i2.67
Refbacks
- There are currently no refbacks.