PENGARUH VARIABEL BEBAS DALAM ANALISIS KAPASITAS DUKUNG DAN PENURUNAN FONDASI TIANG MENGGUNAKAN CORRELATION BASED FEATURE SELECTION (CFS)
Abstract
Fondasi berfungsi sebagai penyalur beban konstruksi ke tanah dan menstabilkan struktur pada bangunan. Estimasi kapasitas dukung dan penurunan fondasi menjadi salah satu bagian penting dalam perancangan bangunan. Dikarenakan perilaku tanah yang kompleks, beberapa asumsi digunakan dalam perancangan fondasi. Sistem kecerdasan buatan (AI) sering digunakan untuk mengatasi masalah tersebut. Penelitian ini membahas tingkat signifikasi variabel bebas terhadap hasil prediksi artificial neural network (ANN) dan support vector machine (SVM) menggunakan metode correlation-based feature selection (CFS). Tingkat akurasi diukur menggunakan koefisien determinasi (R2) dan root mean square error (RMSE). Data set yang digunakan berasal dari pengujian cone penetration test (CPT), karakteristik tiang, dan pengujian beban tiang statis. Data kemudian dibagi menjadi data training dan testing. Setelah pembuatan model dengan data training, model divalidasi menggunakan data testing. Tingkat akurasi diukur menggunakan koefisien determinasi (R2) dan root mean square error (RMSE). Hasil CFS menunjukkan bahwa faktor yang paling berpengaruh pada kapasitas dukung adalah hambatan konus (qc) dengan nilai korelasi (|r|) sebesar 0,7672, sedangkan faktor yang paling berpengaruh terhadap penurunan fondasi tiang adalah diameter fondasi (D) dengan nilai korelasi (|r|) sebesar 0,4287.
Full Text:
PDF (Bahasa Indonesia)References
Albiero, J., Sacilotto, A., Mantilla, J., Teixeira, C., & Carvalho, D. (1995). Sucessive load tests on bored piles. Proceedings. Alkroosh, I., & Nikraz, H. (2011). Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming. Geotechnical and Geological Engineering, 29(5), 725–748. https://doi.org/10.1007/s10706-011-9413-1 Altaee, A., Fellenius, B. H., & Evgin, E. (1992). Axial load transfer for piles in sand. I. Tests on an instrumented precast pile. Canadian Geotechnical Journal, 29(1), 11–20. Avasarala, S., Davidson, J., & McVay, A. (1994). An evaluation of predicted ultimate capacity of single piles from spile and unpile programs. 712–723. Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., Bollen, K. A., Brembs, B., Brown, L., Camerer, C., Cesarini, D., Chambers, C. D., Clyde, M., Cook, T. D., De Boeck, P., Dienes, Z., Dreber, A., Easwaran, K., Efferson, C., … Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behaviour, 2(1), 6–10. https://doi.org/10.1038/s41562-017-0189-z Blessie, E. C., & Karthikeyan, E. (2012). Sigmis: A Feature Selection Algorithm Using Correlation Based Method. Journal of Algorithms & Computational Technology, 6(3), 385–394. https://doi.org/10.1260/1748-3018.6.3.385 Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 Ebrahimian, B., & Movahed, V. (2017). Application of an evolutionary-based approach in evaluating pile bearing capacity using CPT results. Ships and Offshore Structures, 12(7), 937–953. https://doi.org/10.1080/17445302.2015.1116243 Gambini, F. (1985). Experience in Italy with centricast concrete piles. 97–100. Hardiyatmo, H. C. (2011). Teknik Fondasi 1.pdf (2nd ed.). UGM Press. Haustorfer, I., & Plesiotis, S. (1988). Instrumented dynamic and static pile load testing at two bridge sites. Fifth Australia-New Zealand conference on geomechanics: prediction versus performance; preprints of Papers. Hill, C. (1987). Geotechnical report on indicator pile testing and static pile testing, berths 225-229 at Port of Los Angeles. CH2M Hill, Los Angeles. Horvitz, G., Stettler, D., & Crowser, J. (1981). Comparison of predicted and observed pile capacity. 413–433. Ioannidis, J. P. A. (2018). The Proposal to Lower P Value Thresholds to .005. JAMA, 319(14), 1429. https://doi.org/10.1001/jama.2018.1536 Kordjazi, A., Pooya Nejad, F., & Jaksa, M. B. (2014). Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Computers and Geotechnics, 55, 91–102. https://doi.org/10.1016/j.compgeo.2013.08.001 Laier, J. (1994). Predicting the ultimate compressive capacity of long 12-H-74 steel pile. 1804–1818. Mayne, P., & Harris, D. (1993). ‘Axial Load-Displacement Behavior of Drilled Shaft Foundations in Piedmont Residuum. FHWA Reference No. 41-30, 2175. Mohammed Amin Benbouras, Laala Ghelani, and Lina Lefilef, & Alexandru-Ionu¸t Petri¸sor Hamma Zedira. (2021). Forecasting the Bearing Capacity of the Driven Piles Using Advanced Machine-Learning Techniques. https://doi.org/ 10.3390/app112210908 Nevels, J. B., & Snethen, D. R. (1994). Comparison of settlement predictions for single piles in sand based on penetration test results. 1028–1038. Niazi, F. S., & Mayne, P. W. (2010). Evaluation of EURIPIDES pile load tests response from CPT data. ISSMGE International Journal of Geoengineering Case Histories, 1(4), 367–386. O’Neill, M. W. (1986). Reliability of pile capacity assessment by CPT in overconsolidated clay. 237–256. Reese, J., O’Neill, M., & Wang, S. (1988). Drilled shaft tests, Interchange of West Belt Roll Road and US290 Highway, Texas. Lymon C. Reese and Associates, Austin, Tex. Robertson, P., Campanella, R., Davies, M., & Sy, A. (1988). Axial capacity of driven piles in deltaic soils using CPT. 919–927. Sánchez-Maroño, N., Alonso-Betanzos, A., & Tombilla-Sanromán, M. (2007). Filter Methods for Feature Selection – A Comparative Study. In H. Yin, P. Tino, E. Corchado, W. Byrne, & X. Yao (Eds.), Intelligent Data Engineering and Automated Learning—IDEAL 2007 (Vol. 4881, pp. 178–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_19 Shahin, M. A. (2016). State-of-the-art review of some artificial intelligence applications in pile foundations. Geoscience Frontiers, 12. Suprayitno, H., & Ratnasari, V. (2017). Reflexion on linear regression trip production modelling method for ensuring good model quality. 060013. https://doi.org/10.1063/1.5011567 Tucker, L. M., & Briaud, J.-L. (1988). Analysis of the pile load test program at the lock and dam 26 replacement project. TEXAS A AND M UNIV COLLEGE STATION DEPT OF CIVIL ENGINEERING. Tumay, M. T., & Fakhroo, M. (1981). Pile capacity in soft clays using electric QCPT data. 434–455. Viergever, M. A. (1982). Relation between cone penetration and static loading of piles in locally strongly varying sand layers. Weber, L. (1987). Efficiency improvement of steel H-bearing piles. Arbed Research, Final Report, 7210. Yen, T.-L., Lin, H., Chin, C.-T., & Wang, R. (1989). Interpretation of instrumented driven steel pipe piles. Proc. Foundation Eng. Cong.: Current Principle and Practices, GSP No, 22, 1293–1308. Zhang, P. (2019). A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model. Applied Soft Computing, 85, 105859. https://doi.org/10.1016/j.asoc.2019.105859
Refbacks
- There are currently no refbacks.