AKURASI PENGGUNAAN METODE SUPPORT VECTOR MACHINE (SVM) DALAM PREDIKSI KAPASITAS DUKUNG FONDASI TIANG

Raden Harya Dananjaya, Sutrisno Sutrisno, Nanda Milenia Dwi Rahmawati

Abstract

Kapasitas dukung merupakan hal penting yang harus diperhatikan pada saat merancang sebuah fondasi. Artificial intelligence dapat digunakan sebagai salah satu metode untuk memprediksi daya dukung fondasi. Salah satu metode di dalam artificial intelligence yang sering digunakan adalah support vector machine (SVM). Keuntungan dari penggunaan metode SVM adalah pengurangan asumsi yang digunakan untuk memperoleh hubungan antara variabel bebas dengan variabel terikat pada proses prediksi. Penelitian ini bertujuan untuk mengetahui akurasi SVM dalam memprediksi kapasitas dukung fondasi dengan menggunakan data cone penetration test (CPT). Features atau variabel bebas yang digunakan sebagai input adalah diameter tiang (D), panjang tiang (L), pile material, pile type, installation method, nilai qc (tahanan conus) dan fs (tahanan gesek). Untuk melakukan kalibrasi dan validasi, digunakan data loading test. Proses validasi dilakukan dengan menggunakan metode k-fold cross validation yang pada penelitian ini menggunakan 10-folds cross validation. Hasil penelitian menunjukkan bahwa model SVM yang menghasilkan akurasi terbaik adalah dengan menggunakan kernel polynomial, C sebesar 0,5 dan g sebesar 0,1. Proporsi data training dan testing yang menghasilkan akurasi tertinggi adalah 90% : 10%, yang mana memiliki nilai R2 dan RMSE pada proses testing sebesar 0,9287 dan 637,1087 kN, secara berturut-turut.    

References

Albiero, J. H., Sacilotto, A. C., Mantilla, J. N. R., Teixeira, C. Z., & Carvalho, D. (1995). Sucessive load tests on bored piles. Proceedings.

Alkroosh, I., & Nikraz, H. (2011). Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming. Geotechnical and Geological Engineering, 29(5), 725–748. https://doi.org/10.1007/s10706-011-9413-1

Alkroosh, Iyad, & Nikraz, H. (2012). Predicting axial capacity of driven piles in cohesive soils using intelligent computing. Engineering Applications of Artificial Intelligence, 25(3), 618–627. https://doi.org/10.1016/j.engappai.2011.08.009

Alsamman, O. M. (1995). The use of CPT for calculating axial capacity of drilled shafts. University of Illinois at Urbana-Champaign.

Altaee, A., Fellenius, B. H., & Evgin, E. (1992). Axial load transfer for piles in sand. I. Tests on an instrumented precast pile. Canadian Geotechnical Journal, 29(1), 11–20.

Avasarala, S. K. V, Davidson, J. L., & McVay, A. M. (1994). An evaluation of predicted ultimate capacity of single piles from spile and unpile programs. Proc. Int. Conf. on Design and Construction of Deep Foundations, FHWA, 712–723.

Ebrahimian, B., & Movahed, V. (2017). Application of an evolutionary-based approach in evaluating pile bearing capacity using CPT results. Ships and Offshore Structures, 12(7), 937–953. https://doi.org/10.1080/17445302.2015.1116243

Eslami, A., & Fellenius, B. H. (1997). Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, 34(6), 886–904. https://doi.org/10.1139/t97-056

Gambini, F. (1985). Experience in Italy with centricast concrete piles. Proc. Int. Symp, on Penetrability and Drivability of Piles, 97–100.

Hardiyatmo, H. C. (2010). Analisis dan Perancangan Fondasi. In H. C. Hardiyatmo (Ed.), Analisis dan Perancangan Fondasi (3rd ed.). Gadjah Mada University Press.

Haustorfer, I., & Plesiotis, S. (1988). Instrumented dynamic and static pile load testing at two bridge sites. Fifth Australia-New Zealand Conference on Geomechanics: Prediction versus Performance; Preprints of Papers.

Hill, C. (1987). Geotechnical report on indicator pile testing and static pile testing, berths 225-229 at Port of Los Angeles. CH2M Hill, Los Angeles.

Horvitz, G. E., Stettler, D. R., & Crowser, J. C. (1981). Comparison of predicted and observed pile capacity. Cone Penetration Testing and Experience, 413–433.

Kordjazi, A., Pooya Nejad, F., & Jaksa, M. B. (2014). Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Computers and Geotechnics, 55, 91–102. https://doi.org/10.1016/j.compgeo.2013.08.001

Laier, J. E. (1994). Predicting the ultimate compressive capacity of long 12-H-74 steel pile. Proc. Int. Conf. on Design and Construction of Deep Foundations, 1804–1818.

Mayne, P. W., & Harris, D. E. (1993). ‘Axial Load-Displacement Behavior of Drilled Shaft Foundations in Piedmont Residuum. FHWA Reference No. 41-30, 2175.

Nevels, J. B., & Snethen, D. R. (1994). Comparison of settlement predictions for single piles in sand based on penetration test results. Vertical and Horizontal Deformations of Foundations and Embankments, 1028–1038.

Niazi, F. S., & Mayne, P. W. (2010). Evaluation of EURIPIDES pile load tests response from CPT data. ISSMGE International Journal of Geoengineering Case Histories, 1(4), 367–386.

O’Neill, M. W. (1986). Reliability of pile capacity assessment by CPT in overconsolidated clay. Use of In Situ Tests in Geotechnical Engineering, 237–256.

Reese, J. D., O’Neill, M. W., & Wang, S. T. (1988). Drilled shaft tests, Interchange of West Belt Roll Road and US290 Highway, Texas. Lymon C. Reese and Associates, Austin, Tex.

Robertson, P. K., Campanella, R. G., Davies, M. P., & Sy, A. (1988). Axial capacity of driven piles in deltaic soils using CPT. International Symposium on Penetration Testing; ISOPT-1. 1, 919–927.

Shackelford, C. D. (1995). Cumulative mass approach for column testing. Journal of Geotechnical Engineering, 121(10), 696–703.

SIMALANGO, A. (2016). Analisis Daya Dukung Dan Penurunan Pondasi Tiang Pancang Dengan Metode Analitis Dan Metode Elemen Hingga Pada Bore Hole Ii ( Study Kasus Pembangunan Bendung Bajayu Sei Padang Kabupaten Serdang Bedagai Sumatera Utara). Jurnal Teknik Sipil USU.

Suprayogi, I., Trimaijon, & Mahyudin. (2014). Model Prediksi Liku Kalibrasi Menggunakan Pendekatan Jaringan Saraf Tiruan (ZST) (Studi Kasus : Sub DAS Siak Hulu). Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, 1(1), 1–18.

Suwati, Y. (2013). Pengaruh Kompensasi Dan Motivasi Kerja Terhadap Kinerja Karyawan Pada Pt. Tunas Hijau Samarinda. EJournal Ilmu Administrasi Bisnis, 1(1), 41–55.

Tinoco, J., Gomes Correia, A., & Cortez, P. (2014). Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Computers and Geotechnics, 55, 132–140. https://doi.org/10.1016/j.compgeo.2013.08.010

Tucker, L. M., & Briaud, J.-L. (1988). Analysis of the pile load test program at the lock and dam 26 replacement project. TEXAS A AND M UNIV COLLEGE STATION DEPT OF CIVIL ENGINEERING.

Tumay, M. T., & Fakhroo, M. (1981). Pile capacity in soft clays using electric QCPT data. Cone Penetration Testing and Experience, 434–455.

Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., & Mueller, A. (2015). Varoquaux2015. 19(1), 29–33.

Viergever, M. A. (1982). Relation between cone penetration and static loading of piles in locally strongly varying sand layers.

Weber, L. (1987). Efficiency improvement of steel H-bearing piles. Arbed Research, Final Report, 7210.

Yen, T.-L., Lin, H., Chin, C.-T., & Wang, R. F. (1989). Interpretation of instrumented driven steel pipe piles. Proc. Foundation Eng. Cong.: Current Principle and Practices, GSP No, 22, 1293–1308.

Refbacks

  • There are currently no refbacks.