PENERAPAN ARTIFICIAL NEURAL NETWORK (ANN) DALAM MEMPREDIKSI KAPASITAS DUKUNG FONDASI TIANG
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Albiero, J. H., Sacilotto, A. C., Mantilla, J. N. R., Teixeira, C. Z., & Carvalho, D. (1995). Sucessive load tests on bored piles. Proceedings.
Alkroosh, I., & Nikraz, H. (2011). Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming. Geotechnical and Geological Engineering, 29(5), 725–748. https://doi.org/10.1007/s10706-011-9413-1
Alsamman, O. M. (1995). The use of CPT for calculating axial capacity of drilled shafts. University of Illinois at Urbana-Champaign.
Altaee, A., Fellenius, B. H., & Evgin, E. (1992). Axial load transfer for piles in sand. I. Tests on an instrumented precast pile. Canadian Geotechnical Journal, 29(1), 11–20. https://doi.org/10.1139/t92-002
Avasarala, S. K. V., Davidson, J. L., & McVay, A. M. (1994). An evaluation of predicted ultimate capacity of single piles from spile and unpile programs. Proc. Int. Conf. on Design and Construction of Deep Foundations, FHWA, 712–723.
Coduto, D. P. (1994). Foundation Design: Principles and Practices. Prentice Hall.
Du, K.-L., Lai, A. K. Y., Cheng, K. K. M., & Swamy, M. N. S. (2002). Neural methods for antenna array signal processing: A review. Signal Processing, 82(4), 547–561. https://doi.org/10.1016/S0165-1684(01)00185-2
Ebrahimian B. 2011. Interpretation of static pile load tests results: Iran LNG project. Unpublished results. Tehran (Iran): PIRE CO.
Ebrahimian, B., & Movahed, V. (2017). Application of an evolutionary-based approach in evaluating pile bearing capacity using CPT results. Ships and Offshore Structures, 12(7), 937–953. https://doi.org/10.1080/17445302.2015.1116243
Eslami, A. (1997). Bearing capacity of piles from cone penetration test data. University of Ottawa (Canada).
Eslami, A., & Fellenius, B. H. (1997). PILE CAPACITY BY DIRECT CPT AND CPTU METHODS APPLIED TO 102 CASE HISTORIES. CANADIAN GEOTECHNICAL JOURNAL, XXXIV(VI). https://trid.trb.org/view/541361
Fatehnia, M., & Amirinia, G. (2018). A review of Genetic Programming and Artificial Neural Network applications in pile foundations. International Journal of Geo-Engineering, 9(1), 2. https://doi.org/10.1186/s40703-017-0067-6
Gambini, F. (1985). Experience in Italy with centricast concrete piles. Proc. Int. Symp, on Penetrability and Drivability of Piles, 97–100.
Garrett, J. H. (1994). Editorial. Journal of Computing in Civil Engineering, 8(2), 129–130. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(129)
Hardiyatmo, H. C. (2008). Teknik Fondasi (4th ed., Vol. 2). Beta Offset.
Haustorfer, I., & Plesiotis, S. (1988). Instrumented dynamic and static pile load testing at two bridge sites. Fifth Australia-New Zealand Conference on Geomechanics: Prediction versus Performance; Preprints of Papers.
Hill, C. (1987). Geotechnical report on indicator pile testing and static pile testing, berths 225-229 at Port of Los Angeles. CH2M Hill, Los Angeles.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8
Horvitz, G. E., Stettler, D. R., & Crowser, J. C. (1981). Comparison of Predicted and Observed Pile Capacity. 413–433. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0035256
Laier, J. E. (1994). Predicting the ultimate compressive capacity of long 12-H-74 steel pile. Proc. Int. Conf. on Design and Construction of Deep Foundations, 1804–1818.
Matsumoto, T., Michi, Y., & Hirano, T. (1995). Performance of axially loaded steel pipe piles driven in soft rock. Journal of Geotechnical Engineering, 121(4), 305–315.
Mayne, P. W., & Harris, D. E. (1993). ‘Axial Load-Displacement Behavior of Drilled Shaft Foundations in Piedmont Residuum. FHWA Reference No. 41-30, 2175.
Nevels, J. B., & Snethen, D. R. (1994). Comparison of Settlement Predictions for Single Piles in Sand Based on Penetration Test Results. 1028–1038. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0088916
Niazi, F. S., & Mayne, P. W. (2010). Evaluation of EURIPIDES pile load tests response from CPT data. ISSMGE International Journal of Geoengineering Case Histories, 1(4), 367–386.
O’Neill, M. W. (1986). Reliability of Pile Capacity Assessment by CPT in Overconsolidated Clay. 237–256. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0048826
Reese, J. D., O’Neill, M. W., & Wang, S. T. (1988). Drilled shaft tests, Interchange of West Belt Roll Road and US290 Highway, Texas. Lymon C. Reese and Associates, Austin, Tex.
Robertson, P. K., Campanella, R. G., Davies, M. P., & Sy, A. (1988). Axial capacity of driven piles in deltaic soils using CPT. International Symposium on Penetration Testing; ISOPT-1. 1, 919–927.
Tucker, L. M., & Briaud, J.-L. (1988). Analysis of the Pile Load Test Program at the Lock and Dam 26 Replacement Project. TEXAS A AND M UNIV COLLEGE STATION DEPT OF CIVIL ENGINEERING. https://apps.dtic.mil/sti/citations/ADA196924
Tumay, M. T., & Fakhroo, M. (1981). Pile Capacity in Soft Clays Using Electric QCPT Data. 434–455. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0035257
Viergever, M. A. (1982). Relation between cone penetration and static loading of piles in locally strongly varying sand layers.
Weber, L. (1987). Efficiency improvement of steel H-bearing piles. Arbed Research, Final Report, 7210.
Yen, T.-L., Lin, H., Chin, C.-T., & Wang, R. F. (1989). Interpretation of Instrumented Driven Steel Pipe Piles. 1293–1308. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0061045Refbacks
- There are currently no refbacks.