Raden Harya Dananjaya, Sutrisno Sutrisno, Syahid Fitriady


Beberapa tahun terakhir banyak penelitian terkait prediksi kapasitas dukung fondasi menggunakan artificial neural network (ANN). Keuntungan dari model ANN dibandingkan metode tradisional dalam prediksi kapasitas dukung fondasi adalah kemampuan model ANN untuk menangkap hubungan non linier dan kompleks antara kapasitas dukung dan faktor-faktor yang mempengaruhinya. Penelitian ini bertujuan untuk mengembangkan script untuk memprediksi kapasitas dukung fondasi tiang berdasarkan hasil uji CPT menggunakan sistem kecerdasan buatan. Metode yang digunakan adalah artificial neural network (ANN) dengan menggunakan beberapa skenario berdasarkan variasi hidden layer, fungsi aktivasi, dan learning rate. Model dengan performa paling baik berdasarkan metode k-folds cross validation digunakan untuk memprediksi kapasitas dukung fondasi tiang. Hasil penelitian ini menunjukkan bahwa metode kecerdasan buatan dengan model artificial neural network dapat diterapkan dalam memprediksi kapasitas dukung fondasi tiang. Model yang dihasilkan mampu memprediksi nilai kapasitas dukung dengan nilai R2 mencapai 0,91 saat proses testing.


Albiero, J. H., Sacilotto, A. C., Mantilla, J. N. R., Teixeira, C. Z., & Carvalho, D. (1995). Sucessive load tests on bored piles. Proceedings.

Alkroosh, I., & Nikraz, H. (2011). Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming. Geotechnical and Geological Engineering, 29(5), 725–748.

Alsamman, O. M. (1995). The use of CPT for calculating axial capacity of drilled shafts. University of Illinois at Urbana-Champaign.

Altaee, A., Fellenius, B. H., & Evgin, E. (1992). Axial load transfer for piles in sand. I. Tests on an instrumented precast pile. Canadian Geotechnical Journal, 29(1), 11–20.

Avasarala, S. K. V., Davidson, J. L., & McVay, A. M. (1994). An evaluation of predicted ultimate capacity of single piles from spile and unpile programs. Proc. Int. Conf. on Design and Construction of Deep Foundations, FHWA, 712–723.

Coduto, D. P. (1994). Foundation Design: Principles and Practices. Prentice Hall.

Du, K.-L., Lai, A. K. Y., Cheng, K. K. M., & Swamy, M. N. S. (2002). Neural methods for antenna array signal processing: A review. Signal Processing, 82(4), 547–561.

Ebrahimian B. 2011. Interpretation of static pile load tests results: Iran LNG project. Unpublished results. Tehran (Iran): PIRE CO.

Ebrahimian, B., & Movahed, V. (2017). Application of an evolutionary-based approach in evaluating pile bearing capacity using CPT results. Ships and Offshore Structures, 12(7), 937–953.

Eslami, A. (1997). Bearing capacity of piles from cone penetration test data. University of Ottawa (Canada).


Fatehnia, M., & Amirinia, G. (2018). A review of Genetic Programming and Artificial Neural Network applications in pile foundations. International Journal of Geo-Engineering, 9(1), 2.

Gambini, F. (1985). Experience in Italy with centricast concrete piles. Proc. Int. Symp, on Penetrability and Drivability of Piles, 97–100.

Garrett, J. H. (1994). Editorial. Journal of Computing in Civil Engineering, 8(2), 129–130.

Hardiyatmo, H. C. (2008). Teknik Fondasi (4th ed., Vol. 2). Beta Offset.

Haustorfer, I., & Plesiotis, S. (1988). Instrumented dynamic and static pile load testing at two bridge sites. Fifth Australia-New Zealand Conference on Geomechanics: Prediction versus Performance; Preprints of Papers.

Hill, C. (1987). Geotechnical report on indicator pile testing and static pile testing, berths 225-229 at Port of Los Angeles. CH2M Hill, Los Angeles.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

Horvitz, G. E., Stettler, D. R., & Crowser, J. C. (1981). Comparison of Predicted and Observed Pile Capacity. 413–433.

Laier, J. E. (1994). Predicting the ultimate compressive capacity of long 12-H-74 steel pile. Proc. Int. Conf. on Design and Construction of Deep Foundations, 1804–1818.

Matsumoto, T., Michi, Y., & Hirano, T. (1995). Performance of axially loaded steel pipe piles driven in soft rock. Journal of Geotechnical Engineering, 121(4), 305–315.

Mayne, P. W., & Harris, D. E. (1993). ‘Axial Load-Displacement Behavior of Drilled Shaft Foundations in Piedmont Residuum. FHWA Reference No. 41-30, 2175.

Nevels, J. B., & Snethen, D. R. (1994). Comparison of Settlement Predictions for Single Piles in Sand Based on Penetration Test Results. 1028–1038.

Niazi, F. S., & Mayne, P. W. (2010). Evaluation of EURIPIDES pile load tests response from CPT data. ISSMGE International Journal of Geoengineering Case Histories, 1(4), 367–386.

O’Neill, M. W. (1986). Reliability of Pile Capacity Assessment by CPT in Overconsolidated Clay. 237–256.

Reese, J. D., O’Neill, M. W., & Wang, S. T. (1988). Drilled shaft tests, Interchange of West Belt Roll Road and US290 Highway, Texas. Lymon C. Reese and Associates, Austin, Tex.

Robertson, P. K., Campanella, R. G., Davies, M. P., & Sy, A. (1988). Axial capacity of driven piles in deltaic soils using CPT. International Symposium on Penetration Testing; ISOPT-1. 1, 919–927.

Tucker, L. M., & Briaud, J.-L. (1988). Analysis of the Pile Load Test Program at the Lock and Dam 26 Replacement Project. TEXAS A AND M UNIV COLLEGE STATION DEPT OF CIVIL ENGINEERING.

Tumay, M. T., & Fakhroo, M. (1981). Pile Capacity in Soft Clays Using Electric QCPT Data. 434–455.

Viergever, M. A. (1982). Relation between cone penetration and static loading of piles in locally strongly varying sand layers.

Weber, L. (1987). Efficiency improvement of steel H-bearing piles. Arbed Research, Final Report, 7210.

Yen, T.-L., Lin, H., Chin, C.-T., & Wang, R. F. (1989). Interpretation of Instrumented Driven Steel Pipe Piles. 1293–1308.


  • There are currently no refbacks.