Characteristics of functional ice cream produced with goat’s milk kefir in combination with mono-acylglycerol

Muhammad Fajrul Arief, Djalal Rosyidi, Lilik Eka Radiati

Abstract

Objective: The purpose of this study was to determine the character of ice cream made from goat’s milk kefir (GMK) combined with mono-acylglycerol (MAG).

Methods: GMK was produced by pasteurized goat’s milk (85oC for 15 s) and 2% kefir grain. Ice cream mix (ICM) was produced by GMK, MAG (T0= 0%, T1= 0.25%; T2= 0.50%; T3= 0.75%), 4% sucrose, and 0.1% salt. The results of observations processed using Analysis of Variance (ANOVA) and Duncan’s Multiple Range Test (DMRT) if there were a significant difference between treatments.

Results: Es puter (EP) made from GMK in combination with MAG has a distinctive character against T0 (control). The use of GMK decreases the pH value, thereby increasing the lactic acid and ethanol content which brings out the acidity of the product (p<0.05). In addition, increasing MAG concentration can improve the EP’s overrun to make the product more melt resistant (p<0.05). The use of GMK combined with MAG can support the viability of lactic acid bacteria (LAB) and yeast through storage in the freezer. The number of viable LAB and yeast meets WHO standards to obtained health benefit from consuming probiotic ice cream.

Conclusions: To conclude, EP made from GMK in combination with 0.50% MAG was proved to be the best treatment.

 

Keywords

Acidity; Melting rate; Overrun; Probiotic ice cream; Viability

Full Text:

PDF

References

  1. National Standard Organization. 1995. Standar produksi es krim. Badan Standardisasi Nasional. SNI-01-3713-1995. BSN, Jakarta.
  2. Qin, C., L. Liu, Y. Wang. 2022. Advancement of omics techniques for chemical profile analysis and authentication of milk. Trends Food Sci. Technol. 127:114–128. Doi: 10.1016/j.tifs.-2022.06.001
  3. CODEX Alimentarius. 2003. Standard for fermented milks.
  4. Dong, J., B. Liu, and T. Jiang. 2018. The biofilm hypothesis: The formation mechanism of Tibetan kefir grains. Int. J. Dairy Technol. 71:44–50. Doi: 10.1111/1471-0307.12473
  5. Guzel-Seydim, Z. B, C. Gökırmaklı, and A. K. Greene. 2021. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci. Technol. 113:42–53. Doi: 10.1016/j.tifs.2021.04.041
  6. Martins, E. F., N. K. Moura de, and T. K. Moura de. 2022. Determination and standardization of the kefiran extraction protocol for possible pharmacological applications. Carbohydrate Polymer. Technologies and Applications. Doi: 10.1016/j.carpta.2022.100198
  7. Aggarwal, A., R. Seth, K. Gandhi, and S. Wangdare. 2019. Physico-chemical properties of Khoa prepared from lactose hydrolyzed buffalo milk. J. Food Sci. Technol. 56:3067–3076. Doi: 10.1007/-s13197-019-03798-3
  8. Radiati, L. E., D. L. Hati, D. Fardiaz, and L. R. H. Sari. 2022. Effect of Saccharomyces cerevisiae on Probiotic Properties of Goat Milk Kefir. IOP Conf. Ser. Earth Environ. Sci. 1041:012028. Doi: 10.1088/1755-1315/-1041/1/012028
  9. Arief, M. F., R. D. Andini, D. Rosyidi, and L. E. Radiati. 2022. Effect of goat kefir utilization on physicochemical quality and sensory attributes of ice cream probiotic. Proceedings of the 3rd International Conference on Environmentally Sustainable Animal Industry 2022. 28:247. Doi: 10.-2991/978-94-6463-116-6_32
  10. Goktas, H., H. Dikmen, and H. Bekiroglu. 2022. Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. LWT 153:112489. Doi: 10.1016/j.lwt.2021.112489
  11. Hanafi, F. N. A., N. A. Kamaruding, and S. Shaharuddin. 2022. Influence of coconut residue dietary fiber on physicochemical, probiotic (Lactobacillus plantarum ATCC 8014) survivability and sensory attributes of probiotic ice cream. LWT. 154:112725 Doi: 10.1016/j.lwt.2021.112725
  12. Sulmiyati, S., N. S. Said, and D. U. Fahrodi. 2019. The physicochemical, microbiology, and sensory characteristics of Kefir Goat Milk with different levels of Kefir Grain. Trop. Anim. Sci. J. 42:152–158. Doi: 10.5398/tasj.2019.42.2.152
  13. Zoumpopoulou, G., M. Ioannou, and R. Anastasiou. 2021. Kaimaki ice cream as a vehicle for Limosilactobacillus fermentum ACA-DC 179 to exert potential probiotic effects: Overview of strain stability and final product quality. Int Dairy J. 123:105177. Doi: 10.1016/j.idairyj.2021.105177
  14. National Standard Organization. 1992. Standar Pengujian Es Krim. SNI-Pengujian Produk Ternak, Jakarta.
  15. Kozłowicz, K., M. Góral, and D. Góral. 2019. Effect of ice cream storage on the physicochemical properties and survival of probiotic bacteria supplemented with zinc ions. LWT. 116:108562. Doi: 10.1016/j.lwt.-2019.108562
  16. Singh, P., S. Arora, and P. S. Rao. 2022. Effect of process parameters on the β-galactosidase hydrolysis of lactose and galactooligosaccharide formation in concentrated skim milk. Food Chem. 393:133355. Doi: 10.1016/j.foodchem.2022.-133355
  17. Ouwehand, A. C., S. Salminen, and E. Isolauri. 2002. Probiotics: an overview of beneficial effects. In: Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer Netherlands, Dordrecht.
  18. Sarwar, A., T. Aziz, and S. Al-Dalali. 2021. Characterization of synbiotic ice cream made with probiotic yeast Saccharomyces boulardii CNCM I-745 in combination with inulin. LWT. 141:110910. Doi: 10.1016/j.-lwt.2021.110910
  19. Abdoli, M., G. Mohammadi, and K. Mansouri. 2022. A review on anticancer, antibacterial and photo catalytic activity of various nanoparticles synthesized by probiotics. J. Biotechnol. 354:63–71. Doi: 10.1016/j.jbiotec.2022.06.005
  20. Adeloye, J. B., H. Osho, and L. O. Idris. 2020. Defatted coconut flour improved the bioactive components, dietary fibre, antioxidant and sensory properties of nixtamalized maize flour. J Agric Food Res. 2:100042. Doi: 10.1016/j.jafr.2020.100042
  21. Guerrero, C., C. Vera, R. Conejeros R, and A. Illanes. 2015. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme Microb. Technol. 70:9–17. Doi: 10.1016/j.enzmictec.2014.12.006
  22. Guimarães, J. T., C. F. Balthazar, and H. Scudino. 2019. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrason Sonochem. 57:12–21. Doi: 10.1016-/j.ultsonch.2019.05.004
  23. Aiza, M., L. E. Radiati, and D. Rosyidi. 2010. Effect of goat milk kefir on overrun, melting rate and organoleptic properties of ice cream.
  24. Izquierdo-González, J. J., F. Amil-Ruiz, and S. Zazzu. 2019. Proteomic analysis of goat milk kefir: Profiling the fermentation-time dependent protein digestion and identification of potential peptides with biological activity. Food Chem. 295:456–465. Doi: 10.1016/j.foodchem.2019.05.178
  25. Khairunnisa, S., I. L. Kayaputri, and G. L. Utama. 2019. Study of the addition hull of mung bean sprouts extract to ph and characteristic of sensory yogurt probiotic. Jurnal Ilmu dan Teknologi Hasil Ternak. 14:99–106. Doi: 10.21776/ub.jitek.2019.-014.02.4
  26. Karim, A. and M. Aider. 2022. Comprehensive utilization of electro-activated whey-based media in cell growth, metabolite production and aroma compounds synthesis using a starter culture originated from kefir grains. Int. Dairy J. 126:105276. Doi: 10.1016/j.idairyj.-2021.105276
  27. Liu, X., G. Sala, and E. Scholten. 2022. Effect of fat aggregate size and percentage on the melting properties of ice cream. Food Res. Int. 160:111709. Doi: 10.1016/j.foodres.2022-.111709
  28. Wihansah, R. R. S., I. I. Arief, and I. Batubara. 2018. Anti-diabetic potency and characteristics of probiotic goat-milk yogurt supplemented with roselle extract during cold storage. Trop. Anim. Sci. J. 41:191–199. Doi: 10.5398/tasj.2018.41.3.191

Refbacks

  • There are currently no refbacks.