Blood metabolites profile and Growth Hormone mRNA expression of Peranakan Ongole cattle fed with finishing ration containing Vinasse-molasses

Dilla Mareistia Fassah, Nanda Nadhifa Nuraini, Lilis Khotijah, Kokom Komalasari, Sri Suharti, Dewi Apri Astuti, I Komang Gede Wiryawan, Asep Sudarman, Didid Diapari

Abstract

Objective: This study aimed to investigate effects of Molasses replacement with Vinasse-molasses in ration on the blood metabolite profiles and mRNA expression of Growth Hormone 1 (GH1) of finishing Peranakan Ongole (PO) Cattle.

Methods: Ten male PO cattle in averaged 209 ± 21 kg of body weight were equally allocated to receive either molasses or Vinasse-molasses dietary treatments. The concentrate diet was contained of either 15% of molasses (control) or Vinasse-molasses. This study observed the nutrient intake, percentage of weight gain, blood metabolite profiles and GH1 mRNA expression of PO cattle.

Results: The result showed that replacing molasses with vinasse-molasses reduced (P<0.05) dry matter intake (DMI) and intakes of crude protein (CP), ether extract (EE), crude fiber (CF), and total digestible nutrient (TDN). Nevertheless, Vinasse-molasses inclusion did not change (P>0.05) percentage of weight gain. Vinasse-molasses increased (P<0.05) the blood urea nitrogen level, while it did not affect (P>0.05) the GH1 mRNA levels.

Conclusions: It can be concluded that replacing molasses with vinasse-molasses does not change blood metabolite profile, GH1 mRNA expression and performance of PO cattle.  Vinasse-molasses could be applied as energy sources ingredient to replace molasses in finishing cattle feed.

Keywords

Blood metabolites; Cattle; Growth hormone; Vinasse-molasses

Full Text:

PDF

References

  1. Mordenti, A. L., E. Giaretta, L. Campidonico, P. Parazza, and A. Formigoni. 2021. A review regarding the use of molasses in animal nutrition. Animals. 11(1):1–17. Doi: 10.3390/ani11010115
  2. Parsaee, M., M. Kiani Deh Kiani, and K. Karimi. 2019. A review of biogas production from sugarcane vinasse. Biomass Bioenergy. 122:117–125. Doi: 10.1016/j.biombioe.2019.01.034
  3. Gerimipour, A. R., M. Azin, and M. R. Sanjabi. 2019. The effect of vinasse on the growth performance and feed digestibility of holstein male calves. Acta Sci. 41(1):1–7. Doi: 10.4025/actascianimsci.v41i1.45666
  4. Jiang, H. and X. Ge. 2014. Meat science and muscle biology symposium-mechanism of growth hormone stimulation of skeletal muscle growth in cattle. J. Anim. Sci. 92(1):21–29. Doi: 10.2527/jas.2013-7095
  5. Heo, Y-T., J-J. Park, and H. Song. 2015. The effect of glucose and glucose transporter on regulation of lactation in dairy cow. Reprod. Dev. Biol. 39(4):97–104. Doi: 10.12749/RDB.2015.39.4.97
  6. Nishad, R., D. Mukhi, R. K. Menon, and A. K. Pasupulati. 2018. Growth hormone and metabolic homeostasis. EMJ Diabetes. 6(1):78–87. Doi: 10.33590/emjdiabet/10313977
  7. Maneerat, W., S. Prasanpanich, S. Tumwasorn, V. Laudadio, and V. Tufarelli. 2015. Evaluating agro-industrial by-products as dietary roughage source on growth performance of fattening steers. Saudi J. Biol. Sci. 22(5):580–584. Doi: 10.1016/j.sjbs.2015.01.015
  8. Zali, A., M. Eftekhari, F. Fatehi, and M. Ganjkhanlou. 2017. Effect of vinasse (condensed molasses solubles) on performance and meat chemical composition of holstein male calves. Ital. J. Anim. Sci. 16(3):515–520. Doi: 10.1080/1828051X.2017.1298407
  9. López-Campos, Ó., R. Bodas, N. Prieto, P. Frutos, S. Andrés, and F. J. Giráldez. 2011. Vinasse added to the concentrate for fattening lambs: intake, animal performance, and carcass and meat characteristics. J. Anim. Sci. 89(4):1153–1162. Doi: 10.2527/jas.2010-2977
  10. NRC. 2016. Nutrient Requirements of Dairy Cattle. 8th ed. Natl. Acad. Press. Washington DC.
  11. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. Doi: 10.1006/meth.2001.1262
  12. da Silva, H. M., A. B. Donadia, L. F. Moreno, A. S. de Oliveira, E. H. K. B. Moraes, and K. A. K. Moraes. 2021. Prediction of dry matter intake by feedlot beed cattle under tropical conditions. Animal Production Science. 61(8):800-806. Doi: 10.1071/An18767
  13. Oba, M., J. L. Mewis, and Z. Zhining. 2015. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. J. Dairy Sci. 98(1):586–594. Doi: 10.3168/jds.2014-8697
  14. Moharrery, A., M. Larsen, and M. R. Weisbjerg. 2014. Starch digestion in the rumen, small intestine, and hind gut of dairy cows - a meta-analysis. Anim. Feed Sci. Technol. 192:1–14. Doi: 10.1016/j.anifeedsci.2014.03.001
  15. Ginting, S. P., A. Tarigan, K. Simanihuruk, Antonius, and Solehuddin. 2020. Effects of two different energy sources in total mixed diets on the performances and blood metabolites of lactating boerka goats. JITV. 25(1):32–39. Doi: 10.14334/jitv.v25i1.2196
  16. Moeini, M. M., S. Veyskarami, and F. Hozhabri. 2014. Effect of molasses distillers condensed soluble on nutrients digestibility, performance and some blood biological parameters in lambs. Ann. Res. Rev. Biol. 4(2):443-450. Doi: 10.9734/ARRB/2014/5482
  17. Shi, F. H., L. Fang, Q. X. Meng, H. Wu, J. P. Du, X. X. Xie, L. P. Ren, Z. M. Zhou, and B. Zhou. 2014. Effects of partial or total replacement of maize with alternative feed source on digestibility, growth performance, blood metabolites and economics in limousin crossbred cattle. Asian-Australas. J. Anim. Sci. 27(10):1443–1451. Doi: 10.5713/ajas.2014.14057
  18. Puppel, K. and B. Kuczyńska. 2016. Metabolic profiles of cow’s blood; a review. J. Sci. Food. Agric. 96(13):4321–4328. Doi: 10.1002/jsfa.7779
  19. Patra A. K. and J. R. Aschenbach. 2018. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. J. Adv. Res. 13:39–50. Doi: 10.1016/j.jare.2018.02.005
  20. Eisemann, J. H., and L. O. Tedeschi. 2016. Predicting the amount of urea nitrogen recycled and used for anabolism in growing cattle. J. Agric. Sci. 154(6):1118–1129. Doi: 10.1017/S0021859616000228
  21. Getahun, D., T. Alemneh, D. Akeberegn, M. Getabalew, and D. Zewdie. 2019. Urea metabolism and recycling in ruminants. Biomed. J. Sci. Tech. Res. 20(1). Doi: 10.26717/bjstr.2019.20.003401
  22. Dibbisa, D. and A. Duguma. 2021. The role and impacts of growth hormones in maximizing animal production- A review. Turkish JAF Sci. Tech. 9(6):975–981. Doi: 10.24925/turjaf.v9i6.975-981.3852
  23. Sartin, J. L., K. A. Cummins, R. J. Kemppainen, D. N. Marple, C. H. Rahe, and J. C. Williams. 1985. Glucagon, insulin, and growth hormone responses to glucose infusion in lactating dairy cows. Am. J. Physiol. Endocrinol. Metabolism. 248(1):E108–E114. Doi: 10.1152/ajpendo.1985.248.1.E108
  24. Qaid, M. M. and M. M. Abdelrahman. 2016. Role of insulin and other related hormones in energy metabolism - A review. Cogent Food Agric. 2:1267691. Doi: 10.1080/23311932.2016.1267691
  25. Firmenich, C. S., N. Schnepel, K. Hansen, M. Schmicke, and A. S. Muscher-Banse. 2020. Modulation of growth hormone receptor-insulin-like growth factor 1 axis by dietary protein in young ruminants. Br. J. Nutr. 123(6):652–663. Doi: 10.1017/S0007114519003040
  26. Yang, J., X. Hou, A. Gao, and H. Wang. 2014. Effect of dietary energy and protein restriction followed by realimentation on pituitary mRNA expression of growth hormone and related genes in lambs. Small Rumin. Res. 119(1–3):39–44. Doi: 10.1016/j.smallrumres.2014.02.016
  27. Miceikienė, I., N. Pečiulaitienė, N. Makštutienė, L. Baltrėnaitė, K. Morkūnienė, K. Liucvaikienė, and R. Mišeikienė. 2013. Cattle growth hormone and leptin genes influence on fattening traits. Cuban J. Agric. Sci. 47(3):261-265.
  28. Wardeh, M. F. 1981. Models for estimating energy and protein utilization for feeds: Dissertations. Utah State University. Logan.

Refbacks

  • There are currently no refbacks.