Gambaran Escherichia coli resistan antibiotik asal tangan pemerah, ambing sapi, susu serta air di Peternakan Sapi Perah Kecamatan Cendana, Enrekang, Sulawesi Selatan

Milawarni Milawarni, Herwin Pisestyani, Denny Widaya Lukman


Objective: This study aimed to describe the resistance of E. coli to several types of antibiotics isolated from water, milker hand swabs, cow udder swabs and milk in the Enrekang dairy farm, South Sulawesi.

Methods: Isolation and identification of E. coli refers to SNI 2897:2008 concerning Methods for Testing Microbial Contamination in Meat, Eggs and Milk, and their Processed Products. The test of E. coli resistance to antibiotics by disc diffusion method and interpretation of the results refers to the Clinical and Laboratory Standards Institute (CLSI). The samples were 13 milker hand swabs, 52 cow udder swabs, 52 individual milks, and 13 water used for rearing activities.

Results: E. coli isolates (n=64) consisted of 7 isolates from hand swabs, 7 isolates from milking hands, 20 isolates from udder swabs, 31 isolates from milk, and 6 isolates from water. E. coli isolates were resistant to erythromycin and ampicillin as much as 78%, trimethoprim-sulfamethoxazole 34.4%, tetracycline 31%, ceftazidime 25%, chloremphenicol 22%, enrofloxacin 9.4%, and gentamicin 4.6%. The pattern of E. coli resistance to antibiotics showed that the isolates of E. coli multiple drugs were resistant to up to 7 antibiotics at once.

Conclusions: E. coli isolates from milk, cows, milk and water in the Enrekang dairy farming area, South Sulawesi has developed resistance to several types of antibiotics and have the potential to spread resistance genes to other bacteria and threaten human, animal and environmental health.


Antibiotic resistance; E. coli; Hand swab; Milk; Udder swab


  1. Karlowsky, A. J., K. B. Samuel, B. C. Amina, S. Nabila, Z. Khalid, M. Naglaa, A. Taha, and F. S. Daniel. Antimicrobial susceptibility testing of clinical isolates of Gram-negative bacilli collected in Morocco by the ATLAS Global Surveillance Program from 2018 to 2020. J. of Glob. Antimicrob. Resist. 30: 23-30.
  2. O’Neill, J. 2016. Global burden of bacterial antimicrobial resistance in 2019. a systematic analysis. Arch. of Pharm. Prac.t 7(3): 110. Doi: 10.4103/2045-080x.186181
  3. Blaak, H., A. H. A. M. van Hoek, R. A. Hamidjaja, R. Q. J. van der Plaats, L. Kerkhof- de Heer, A. M. de Roda Husman, and F. M. Schets. 2015. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PloS one. 10(8): 1-23. Doi: 10.1371/journal.pone.013 5402
  4. Frieri, M., K. Kumar, A. Boutin. 2017. Antibiotic resistance. J. of Infect. and Public Health. 10(4):369–378. Doi:10.1016/j.jiph.20 16.08.007
  5. Calvina, E. L. E, F. Z. Tomas, O. S. U. G John, Y. C. Hafizah, S. S. Gunnar, H. Bjørg, Y. E. Sabiha, and S. Arnfinn. 2021. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect. Dis. 21(6). Doi: 10. 1186/s12879-020-05696-y
  6. Álvarez-Fernández, E., A. Cancelo, C. Díaz- Vega, R. Capita, dan C. Alonso-Calleja. 2013. Antimicrobial resistance in E. coli isolates from conventionally and organically reared poultry: A comparison of agar 11 disc diffusion and Sensi Test Gram-negative methods. Food Control. 30(1): 227-234. Doi: 10.1016/j.foodcont.2012.06.005
  7. Economou, V., dan P. Gousia. 2015. Agriculture and food animals as a source of antimicrobial- resistant bacteria. Infect. Drug Resist. 8(5): 49-61. Doi: 0.2147/IDR.S55778
  8. Aidara-Kane, A., A. Andremont, dan P. Collignon. 2013. Antimicrobial resistance in the food chain and the AGISAR initiative. J. of Infect. and Public Health. 6(3): 162-165. Doi: 10.10 16/j.jiph .2013 .04.001
  9. Loncaric, I., G. L. Stalder, K. Mehinagic, R. Rosengarten, F. Hoelzl, F. Knauer, dan C. Walzer. 2013. Comparison of ESBL – and AmpC producing Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from migratory and resident population of rooks (Corvus frugilegus) in Austria. PLoS One. 8(12): e84048. Doi: 10.1371/ journal. Pone. 0084048
  10. Rather, I. A., B. C. Kim, V. K. Bajpai, dan Y. H. Park. 2017. Self medication and antibiotic resistance: crisis, current challenges, and prevention. Saudi J. of Biol. Sci. 24: 808-812. Doi: 10.1016/j.sjbs. 2017.01.004
  11. Hoang, M. D., M. S. Hoang, K. I. Honjoh, T. Miyamoto. 2016. Isolation and bio-control of Extended Spectrum Beta-Lactamase (ESBL)- producing Escherichia coli contamination in raw chicken meat by using lytic bacterio phages. Food Sci. and Technol. 71: 339-346. Doi:10.1016/j.lwt.2016.04.013
  12. [CLSI] Clinical and Laboratory Standards Institute. 2020. Performance Standards for Antimicrobial Susceptibility Testing;. CLSI document M100, 30th edition. Wayne: Clinical and Laboratory Standards Institute.
  13. Welde, N., A. F. Fufa, dan W. B. Bihonegn. 2020. Isolation, identification and antimicrobial susceptibility profiles of E. coli O157: H7 from raw cow milk in and around Modjo Town, Ethiopia. J. of Am. Sci. 16(6): 62-79. Doi: 10.7537/marsjas160620.08
  14. Navab-Daneshmand, T., M. N. D. Friedrich, Gächter, M. C. Montealegre, L. S. Mlambo, T. Nhiwatiwa, M. Hans-Joachim, dan T. R. Julian. 2018. Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in Urban Harare: Correlations and Risk Factors. The Am. J. of Trop. Med. and Hyg. 98(3): 1-23. Doi: 10.4269/ajtmh.17-0521
  15. Van, D. D., E. Cober, dan S. Richter. 2014. Tigecycline therapy for carbapenem-resistant Klebsiella pneumoniae (CRKP) bacteriuria leads to tigecycline resistance. Clin. Microbiol. Infect. 5(2): 556-776. Doi: 10.1111/1469-0691.12714
  16. Calvina, E. L. E., F. Z. Tomas, O. S. U. G. John, Y. C. Hafizah, S. S. Gunnar, B. Haldorsen, Y. E. Sabiha, dan S. Arnfinn. 2021. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect. Dis. 21(6). Doi: 10.1186/s12879-020-05696-y
  17. Hinthong, W., P. Natapol, S. Sirijan, K. Suphang, B. Shutipen, S. Nitat,C.A. Wanpen, dan I. Nitaya. 2017. Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand. Peer J. 5: e3431. Doi: 10.7717/peerj.3431
  18. Bouari, C., G. C. Nadas, F. Chirila, S. Rapuntean, C. Catoi, F. A. Tabaran, A. Gal, M. Taulescu, dan N. I. Fit. 2016. Prevalence and antimicrobial susceptibility profiles of pathogen isolated from bovine mastitis milk in Transylvania, Romania. Frontier Veterinary Science. 73 (2): 329-333. Doi: 10.15835/buas vmcn-vm:12199
  19. Sabir, S., A. A. Aftab, I. Tayyaba, A. A. Muhammad, R. K. Mutiur, dan N. Muhammad. 2014. Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital. Pakistan J. of Med. Sci. 30(2): 389-392. Doi: 10.12669/pjms.302.4289
  20. Nitzan, M. O’Elias, B. Chazan, dan W. Saliba. 2015. Urinary tract infections inpatients with type 2 diabetes mellitus: review of prevalence, diagnosis, and management Orna. Diabetes, Metabolic Syndr. Obesity Target Ter. 8: 129 -136. Doi: 10.2147/DMSO. S51792
  21. Poirel,L., Y. M. Jean, L. Agnese, Anne-Kathrin, N. K. Schink, N. Patrice, dan S. Stefan. 2018. Antimicrobial Resistance in Escherichia coli. Microbiol Spectrum. 6(4): 1-27. Doi: 10.1128/microbiolspec.ARBA-0026- 2017
  22. Sudarwanto, M. B., D. W. Lukman, H. Latif, H. Pisestyani, E. Sukmawinata, O. Akineden, E. Usleber. 2016. CTX- M producing Escherichia coli isolated from cattle feses in Bogor Slaughterhouse, Indonesia. Asian Pac. of Trop. Biomed. 6(7): 605-608. Doi: 10.1016/j.apjtb. 2016.05.001


  • There are currently no refbacks.