Effect of polymorphism of Insulin-induced gene 1 (INSIG1) (A4366G) on slaughter characteristics in unproductive Kebumen Ongole Grade cows

Slamet Diah Volkandari, Saiful Anwar, Ari Sulistyo Wulandari, Pita Sudrajad, Indriawati Indriawati, Mukh Fajar Nasrulloh, Ika Rahmawati, Endang Tri Margawati, Muhammad Cahyadi


Objective: Kebumen Ongole Grade (Kebumen OG) are known as good performance cattle with body weight and body measurement higher than National Standard of Ongole Grade cattle. Productivity is influenced by genetic and environmental factors. Insulin-induced gene-1 (INSIG1) gene is one of many genes that are considered important in influencing carcass characteristics and playing an important role in lipid metabolism (adipogenesis and or lipogenesis). So, the aim of this study was to identify of SNP A4366G in INSIG1 gene and associated with slaughter characteristics of unproductive Kebumen OG cows.

Methods: In this study used 44 unproductive Kebumen OG cows from slaughter house in Kebumen. Slaughter characteristics contain of slaughter weight, hot carcass weight and dressing percentage. Three milliliters of blood samples were collected from vena jugularis. DNA were extracted from blood samples using salting out method. Genotyping of INSIG1 gene (A4366G) used PCR-RFLP method with TaqI restriction enzyme. Genetic diversity data in this study were allele and genotype frequencies, heterozygosity, PIC and HWE. Association of genotypes of INSIG1 gene with slaughter characteristics were analyzed using ANOVA univariate model.

Results: Polymorphic of INSIG1 (A4366G) gene was found in the unproductive Kebumen OG cows. Three variants of genotypes (AA, AG, GG) with two alleles (A and G) were found with allele frequencies 0.795 for G allele. The population was in equilibrium genetic. Association of slaughter characteristics with genotypes were not significant (p>0.05).

Conclusions: Polymorphic of INSIG1 gene (A4366G) was found in unproductive Kebumen OG cows population with dominant of G allele. The population was in genetic equilibrium. The association of slaughter characteristics with genotype of INSIG1 gene (SNP A4366G) was not significant.


INSIG1 gene; SNP A4366G; slaughter weight; carcass weight; dressing percentage; unproductive Kebumen OG cows

Full Text:



  1. BPS. 2011. Pendataan sapi potong, sapi perah dan kerbau tahun 2011 (PSPK2011). Badan Pusat Statistik, Jakarta.
  2. Hartati, H., S. Anwar, and B. D. P. Soewandi. 2018. Genetic polymorphism of Pit-1|HinfI gene in Grati-Ongole Grade cattle at Indonesian Beef Cattle Research Station. J. Indones. Trop. Anim. Agric. 43(4):315-322. Doi: 10.14710/jitaa.43.4.315-322.
  3. Kementan. 2015. Keputusan Menteri Pertanian Republik Indonesia No. 358/Kpts /PK.040/6/2015 tentang Penetapan Galur Sapi Peranakan Ongole Kebumen. Kementerian Pertanian Republik Indonesia, Jakarta.
  4. Sudaryanto, A.T, Sutopo, E. Kurnianto. 2018. Phenotype diversity of Ongole Grade cattle in breeding area of Central Java. J. Vet. 19:478-487. Doi: 10.19087/jveteriner.2018.19.4
  5. Sudrajad, P., S. Subiharta, Y. Adinata, A. Lathifah, J. H. Lee, J. A. Lenstra, and S. H. Lee. 2020. An insight into the evolutionary history of Indonesian cattle assessed by whole genome data analysis. PloS ONE 15(11):e0241038. Doi: 10.1371/journal.pone.0241038
  6. Sudrajad, P, and Subiharta. 2014. Phenotypic characteristics of Ongole Grade cows in Kebumen. Widyariset. 17:283-290. Doi: 10.14203/widyariset. 17.2.2014.283-290
  7. Hadley, G. L., C. A. Wolf, and S. B. Harsh. 2006. Dairy cattle culling patterns, explanations, and implications. J. Dairy Sci. 89:2286-2296. Doi: 10.3168/jds.S0022-0302(06)72300-1
  8. Couvreur, S., G. L. Bec, D. Micol, and B. Picard. 2019. Relationships between cull beef cow characteristics, finishing practices and meat quality traits of longissimus thoracis and rectus abdominis. Food. 8:141. Doi: 10.3390/foods8040141
  9. Bazzoli, I., M. De Marchi, A. Cecchinato, D. P. Berry, and G. Bittante. 2014. Factors associated with age at slaughter and carcass weight, price, and value of dairy cull cows. J. Dairy Sci. 97:1082-1091. Doi: 10.3168/jds.2013-6578
  10. Cancian, P. H., R. da C. Gomes, F. R. Manicardi, A. C. Ianni, M. de N. Bonin, P. R. Leme, and S. da L. e Silva. 2014. Correlations of visual scores, carcass traits, feed efficiency and retail product yield in Nellore cattle. Sci. Agric. 71:17-22. Doi: 10.1590/S0103-90162014000100002
  11. Pečiulaitienė, N., V. Jukna, E. Meškinytė-Kaušilienė, S. Kerzienė, S. Moleikaitienė. 2015. Effects of weight and age on carcass yield and conformation of cattle. Biotechnol. Anim. Husb. 31:73-84. Doi: 10.2298/ BAH1501073P
  12. Setiyono, S. Triatmojo, T. Haryadi, and D. E. Putra. 2015. Correlation between the slaughter weight and carcass weight of cattle in Kebumen, Central Java. Proc. The 6th ISTAP. p.331-335.
  13. Li, J., K. Takaishi, W. Cook, S. K. McCorkle, and R. H. Unger. 2003. INSIG-1 “brakes” lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc. Natl. Acad. Sci. USA. 100:9476-9481. Doi: 10.1073/pnas.1133426100
  14. Li, C., M. Wang, T. Zhang, Q. He, H. Shi, J. Luo, and J. J. Loor. 2019. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J. Dairy Sci. 102:1736-1746. Doi: 10.3168/jds.2018-15492
  15. Lindholm-Perry, A. K., H. C. Freetly, W. T. Oliver, L. A. Rempel, and B. N. Keel. 2020. Genes associated with body weight gain and feed intake identified by meta-analysis of the mesenteric fat from crossbred beef steers. PLoS One 15(1):e0227154. Doi: 10.1371/journal.pone.0227154
  16. Moisá, S. J., D. W. Shike, D. B. Faulkner, W. T. Meteer, D. Keisler, and J. J. Loor. 2013. Central role of the PPARγ gene network in coordinating beef cattle intramuscular adipogenesis in response to weaning age and nutrition. Gene Regul. Syst. Bio. 8:17-32. Doi: 10.4137/GRSB.S11782
  17. Liu, Y., X. L. Liu, H. He, and Y. L. Gu. 2012. Four SNPs of insulin-induced gene 1 associated with growth and carcass traits in Qinchuan cattle in China. Genet. Mol. Res. 11:1209-1216. Doi: 10.4238/ 2012.May.8.3
  18. Montgomery, G. W, and J. A. Sise. 1990. Extraction of DNA from sheep white blood cells. New Zealand J. Agric. Res. 33:437-441. Doi: 10.1080/00288233.1990.10428440
  19. Nei, M, and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York.
  20. Nei, M and A. K. Roychoundhry. 1974. Sampling variances of heterozygosity and genetic distance. Genet. 76:379-390.
  21. Sudjana. 1994. Dasar-Dasar Statistik. Tarsito. Bandung, Indonesia. p. 78-81.
  22. Irshad, A., G. Kandeepan, S. Kumar, A. A. Kumar, M. R. Vishnuraj, and V. Sukla. 2012. Factors influencing carcass composition of livestock: a Review. J. Anim. Prod. Adv. 3:177-186. Doi: 10.5455/ japa.20130531093231
  23. Haryoko, I, and P. Suparman. 2009. Evaluation of carcass production of PO cattle based on heart girth measurement, body condition score and slaughter weight. Anim. Prod. 11:28-33.
  24. Kusuma, S. B., N. Ngadiyono, and Sumadi. 2017. The correlation of body measurement and weights of Ongole Crossbred (PO) cattle in Kebumen regency. Proc. The 7th ISTAP. p. 880-884.
  25. Chen, N., J. Huang, A. Zulfiqar, R. Li, Y. Xi, M. Zhang, R. Dang, X. Lan, H. Chen, Y. Ma and C. Lei. 2018. Population structure and ancestry of Qinchuan cattle. Anim. Genet. 49:246-248. Doi: 10.1111/age.12658
  26. Iversen, M. W., Ø. Nordbø, E. Gjerlaug-Enger, E. Grindflek, M. S. Lopes, and T. Meuwissen. 2019. Effect of heterozygosity on performance of purebred and crossbred pigs. Genet. Sel. Evol. 51:8. Doi: 10.1186/s12711-019-0450-1
  27. Mayo, O. 2008. A century of Hardy-Weinberg Equilibrium. Twin Res. Hum. Genet. 11:249-256. Doi: 10.1375/twin.11.3.249
  28. Sun, J., Y. Guo, D. Liu, W. Ma, J. Xue, C. Zhang, X. Lan, C. Lei, and H. Chen. 2012. Haplotype combination of the bovine INSIG1 gene sequence variants and association with growth traits in Nanyang cattle. Genome. 55:429-436. Doi: 10.1139/G2012-029


  • There are currently no refbacks.