Degenerasi dan nekrosis pada neuron penyusun sistem saraf enterik di usus halus dan usus besar tikus yang diinjeksi paraquat dichloride

Tri Wahyu Pangestiningsih, Daisynta Prima Aninditya, Gerarda Gita Puspitandaru, Iffah Sofana, Rina Pratiwi


Objective: In Parkinson's disease (PD) patients, there is a disruption in the function of catecholaminergic neurons in Enteric nervous system (SSE) with some symtoms: constipations and diarrhea. Paraquat dichloride (PQ) is a neurotoxic herbicide which is thought to induce PD. This study aims to study the histological features of neurons in the enteric nervous system of small and large intestines injected with PQ.

Methods: Ten rats were divided into 2 groups of 5 each. The control group was injected with distilled water and the treatment group was injected with PQ 7 mg/kg BW. The injection was given intraperitoneally, twice a week for 3 weeks with a volume of 1 ml/injection. Small intestine and large intestine were collected and processed for histological preparations in paraffin incisions, then stained with cresyl violet and immunohistochemistry using tyrosine hydroxylase antibody as a marker of catecholaminergic neurons. Intestinal histological preparations were observed under light microscope and analyzed descriptively.

Results: Neurons in the small intestine and large intestine of normal group rats were observed normal, while in the treatment group some neurons were normal, but some of them became degeneration in the form of chromatolysis, also necrosis which was characterized by damage of cell membranes, karyolysis, loss of most of the Nissl bodies, and decreased numbers of catecholaminergic neurons.

Conclusions: Paraquat dichloride cause changes in enteric nervous system’s neuron structures in the form of degeneration, necrosis, and a decrease in the number of catecholaminergic neurons in the small intestine and large intestine.


enteric nervous system; large intestine; neurons; paraquat dichloride; small intestine


  1. Furness, J. B. 2006. The Enteric Nervous System. Blackwell Publishing, Inc. Denmark. p. 31-43.
  2. Mandic P., T. Filipović, M. Gasić, N. Djukić-Macut, M. Filipović, and I. Bogosavljević. 2016. Quantitative morphometric analysis of the myenteric nervous plexus ganglion structures along the human digestive tract. Vojnosanit. Pregl. 73:559–565. Doi: 10.2298/vsp141231046m
  3. Hana, A., P. Astuti, Y. Fibrianto, S. Sarmin, dan C. Arifin. 2015. Profil saraf nitrergik sekum ayam pedaging yang diinfeksi eimeria tenella. Jurnal Veteriner, 16(4):468-473.
  4. Mazzuoli, G. and M. Schemann. 2012. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PlosOne. 7(2):1-9. Doi: 10.1371/journal.pone.0039887
  5. Blesa, J., S. Phani, V. Jackson-Lewis, and S. Przedborski. 2012. Classic and new animal models of parkinson's disease. J. Biomed. Biotechnol. 2012:1-10.
  6. Kim, J. and H. Sung. 2015. Gastrointestinal autonomic dysfunction in patients with parkinson’s disease. J Mov Disord 8(2):76-82. Doi: 10.14802/jmd.15008
  7. Niso-Santano, M., J. M. Moran, L. Garcia-Rubio, A. Gomez- Martin, and R. A. Gonzalezpolo. 2006. Low concentrations of paraquat induces early activation of extracellular signal regulated kinase 1/2, protein kinase B, and C-Jun N terminal kinase 1/2 pathways: role of c-Jun N-terminal kinase in paraquat induced cell death. Toxicol. Sc. (2):507-15. Doi: 10.1093/toxsci/kfl013
  8. Anita, H. P. Sharma, P. Jain, and P. Amit. 2014. Apoptosis (Programmed Cell Death) - A Review. WJPR. 3(4): 1854-1872.
  9. Waxenbaum, J. A., and M. Varacallo. 2019. Anatomy, autonomic nervous system. StatPearls Publishing. USA. pp. 86-88.
  10. Emril, D. R. 2010. Peran cytidine 5'-diphosphocoline dalam penatalaksanaan nyeri neuropatik. Jurnal Kedokteran Syiah Kuala. 2010(1):51-62.
  11. Moon, L. D. F. 2018. Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev. Neurobiol. 78(10):1011–1024. Doi: 10.1002/dneu.22625
  12. Wu, B., B. Song, H. Yang, B. Huang, B. Chi, V. Guo, and H. Liu. 2013. Central nervous system damage due to acute paraquat poisoning: An experimental study with rat model. Neurotoxicology. 1(35):62-70. Doi: 10.1016/j.neuro.2012.12.001
  13. Gawarammana, I. B., dan N. A. Buckley. 2011. Medical management of paraquat ingestion. Br. J. Clin. Pharmacol. 72(5):745-757. Doi: 10.1111/j.1365-2125.2011.04026.x
  14. Wang, Q., N. Ren, Z. Cai, Q. Lin, Z. Wang, Q. Zhang, S. Wu, and H. Li. 2017. Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2. NPJ Parkinsons Dis. 3 (31):1-10. Doi: 10.1038/s41531-017-0033-1
  15. Guo, C. and P. Chen. 2012. Mitochondrial free radicals, antioxidants, nutrient substances, and chronic hepatitis C. In: El-Missiry, M. A. 2012. Antioxidant Enzyme. IntechOpen. Croatia. 237. Doi: 10.5772/51315
  16. Reynolds, A. D., R. Banerjee, J. Liu, H. E. Gendelman, and R. L. Mosley. 2010. Neuroprotective activities of CD4+CD25+ regulatory T cells. Neuroimmune Biol. 9(17): ]197-210. Doi: 10.1189/jlb.0507296
  17. Chen, L., H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. 2017. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9(6):7204-7218. Doi: 10.18632/oncotarget.23208
  18. Kumar, V., A. K. Abbas, N. Fausto, and Aster, J. C. 2009. Robbins & Cotran Pathologic Basis of Disease E-Book. 8th ed. Elsevier Health Sciences. Philadelphia. p 3-14.
  19. Franco, R., S. I. Li, H. Rodriguez-Rocha, M. M. I. M. Burns, and Panayiotidis. 2010. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to parkinson’s disease. Chem. Biol. Interact. 188(2):289-300. Doi:10.1016/j.cbi.2010.06.003
  20. Miller, M. A. dan J. F. Zachary. 2017. Mechanisms and morphology of cellular injury, adaptation, and death. In: J. F. Zachary, ed. Pathologic Basis of Veterinary Disease. London: Elsevier. 2-43. Doi: 10.1016/B978-0-323-35775-3.00001-1
  21. Boudreau, M. D., H. W. Taylor, D. G. Baker, and J. C. Means. 2006. Dietary exposure to 2-aminoanthracene induces morphological and immunocytochemical changes in pancreatic tissue of fisher 344 rats. J. Toxicol. Sci. 93: 50-61. Doi: 10.1093/toxsci/kfl033
  22. Pangestiningsih, T. W., W. D. Wendo, Y. N. Selan, F. A. Amalo, N. A. Ndoang, and V. Lenda. 2014. Histological features of catecholaminergic neuron in substantia nigra induced by paraquat dichloride (1,1-dimethyl-4,4 bipirydinium) in Rat as a Medel of Parkinson Disease. Indonesian J. Biotech. 10(1):91-98. Doi: 10.22146/ijbiotech.8638
  23. Adi, Y. K., R. Widayanti, and T. W. Pangestiningsih. 2018. n-Propanol extract of boiled and fermented koro benguk (Mucuna pruriens seed) shows a neuroprotective effect in paraquat dichloride-induced Parkinson’s disease rat model. Vet. World. 11(9),1250-1254. Doi: 10.14202/vetworld.2018.1250-1254


  • There are currently no refbacks.