Multivariate analysis of five chicken breed in Indonesia based on microsatellite allele frequency

Ferdy Saputra, Tike Sartika, Anneke Anggraeni, Andi Baso Lompengeng Ishak, Komarudin Komarudin, Nurul Pratiwi

Abstract

Objective: This study tries to examine several multivariate methods in classifying genetic diversity using microsatellite allele frequency data.

Methods: This study used microsatellite allele frequency data from White Leghorn (n = 48), Kampung (n = 48), Pelung (n = 24), Sentul (n = 24), and Black Kedu (n = 25) from Indonesian Research Institute for Animal Production. Allele frequency data were analyzed by the Neighbor-Joining (NJ) method using the POPTREE2 program. The data was also analyzed by the Principal Component Analysis (PCA), Correspondence Analysis (CA), and Hierarchical Clustering on Principal Components (HCPC) methods using the factoextra and FactoMineR packages in the R 4.0.0 program.

Results: Correspondence Analysis (CA) found Sentul is more closer to Black Kedu. However, based on NJ, PCA, and HCPC showed Sentul is closer to Kampung. Based on the value of Dimension 1, Correspondence Analysis (80.7%) can explain greater variation than PCA (58.9%). However, CA method generated different results compared to NJ, PCA, and HCPC. NJ, PCA, and HCPC found four chicken clusters, namely cluster 1 (White Leghorn), cluster 2 (Pelung), cluster 3 (Black Kedu), and cluster 4 (Kampung and Sentul).

Conclusions: In conclusion, HCPC is a better multivariate method for analyzing allele frequency data than PCA and CA. HCPC can be used to analyze allele frequency data better than PCA, because HCPC is a combination of methods from hierarchical clustering and principal components.

Keywords

Multivariate analysis; Indonesian chickens; Frequency alleles; Microsatellites

Full Text:

PDF

References

  1. Rusdiana, S., and T. Sartika. 2020. Peningkatan Nilai Ekonomi Pada RTM (Rumah Tangga Miskin) Melalui Program Bekerja Kementerian Pertanian. SOCA J. Sos. Ekon. Pertan. 14:146–157. doi: 10.24843/SOCA.2020.v14.i01.p12.
  2. Nataamijaya, A. G. 2000. The Native Chicken Of Indonesia. Bull. Plasma Nutfah. 6:1–6.
  3. Orgogozo, V., B. Morizot, and A. Martin. 2015. The differential view of genotype-phenotype relationships. Front. Genet. 6:179. Doi:10.3389/fgene.2015.00179.
  4. Vieira, M. L., L. Santini, A. L. Diniz, and C. Munhoz. 2016. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39:312–328. doi:10.1590/1678-4685-GMB-2016-0027.
  5. Abdul-Muneer, P. M. 2014. Application of Microsatellite Markers in Conservation Genetics and Fisheries Management: Recent Advances in Population Structure Analysis and Conservation Strategies. Genetics Research International. 2014: 691759. doi:10.1155/2014/691759
  6. Jin Xiong. 2006. Essential Bioinformatics. Cambridge University Press. New York.
  7. Jombart, T. 2008. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. 11:1403–1405. doi:10.1093/bioinformatics/btn129.
  8. Agung, P. P., F. Saputra, M. S. A. Zein, A. S. Wulandari, W. P. B. Putra, S. Said, and J. Jakaria. 2019. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australasian J. Anim. Sci. 32:467–476. doi:10.5713/ ajas.18.0283.
  9. Sartika, T., S. Iskandar, L. Prasetyo, H. Takahashi, and M. Mitsuru. 2004. Kekerabatan Genetik Ayam Kampung, Pelung, Sentul dan Kedu Hitam dengan Menggunakan Penanda DNA Mikrosatelit: I. Grup Pemetaan pada Makro Kromosom. JITV. 9:81–86.
  10. Takezaki, N., M. Nei, and K. Tamura. 2010. POPTREE2: Software for Constructing Population Trees from Allele Frequency Data and Computing Other Population Statistics with Windows Interface. Mol. Biol. Evol. 27:747–752. doi:10.1093/molbev/msp312
  11. Kassambara, A., and F. Mundt. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Available from: https://cran.r-project.org/ package=factoextra
  12. Husson, F., J. Josse, S. Le, and J. Mazet. 2015. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. R package version 1.31.4. 2015. 24:1–18.
  13. R Core, T. 2020. R: A Language and Environment for Statistical Computing. Available from: https://www.r-project.org/
  14. Sudrajat, and A. Y. Isyanto. 2018. Keragaan peternakan ayam sentul di kabupaten Ciamis. J. Pemikir. Masy. Ilmuah Berwawasan Agribisnis. 4:237–253.
  15. Nataamijaya, A. G. 2008. Karakteristik Dan Produktivitas Ayam Kedu Hitam. Buletin Plasma Nutfah. 14:85-89. doi:10.21082/ blpn.v14n2.2008.p85-89
  16. Dharmayanthi, A. B., Y. Terai, S. Sulandari, M. S. A. Zein, T. Akiyama, and Y. Satta. 2017. The origin and evolution of fibromelanosis in domesticated chickens: Genomic comparison of Indonesian Cemani and Chinese Silkie breeds. PLoS One. 12:e0173147. doi:10.1371/journal.pone .0173147
  17. Nataamijaya, A. G. 2010. Pengembangan Potensi Ayam Lokal Untuk Menunjang Peningkatan Kesejahteraan Petani. Jurnal Litbang Pertanian, 29: 131-138.
  18. Asmara, I. Y., D. Garnida, W. Tanwiriah, R. Partasasmita. 2019. Qualitative morphological diversity of female Pelung Chickens in West Java, Indonesia. Biodiversitas 20: 126-133. doi:10.13057/ biodiv/d200115
  19. Roth, L. S. V., and O. Lind. 2013. The Impact of Domestication on the Chicken Optical Apparatus. PLoS One. 8:e65509. doi:10.1371/journal.pone.0065509.
  20. Abe, H., K. Nagao, A. Nakamura, M. Inoue-Murayama. 2013. Differences in responses to repeated fear-relevant stimuli between Nagoya and White Leghorn chicks. Behavioural Processes 99: 95– 99. doi:10.1016/j.beproc.2013.07.004
  21. Davidson, R., and A. M. del Campo. 2020. Combinatorial and Computational Investigations of Neighbor-Joining Bias. Frontiers in Genetics. 11: 584785. doi: 10.3389/fgene.2020.584785
  22. Mariandayani, H. N., D. D. Solihin, S. Sulandari, and C. Sumantri. 2013. Keragaman Fenotipik dan Pendugaan Jarak Genetik pada Ayam Lokal dan Ayam Broiler Menggunakan Analisis Morfologi. Jurnal Veteriner. 4: 475-484.
  23. Ma, J., and C. I. Amos. 2012. Principal components analysis of population admixture. PLoS One. 7:e40115. doi:10.1371/journal.pone.0040115.
  24. Jombart, T., S. Devillard, and F. Balloux. 2010. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11:94. doi:10.1186 /1471-2156-11-94.
  25. Gärke, C., F. Ytournel, B. Bed’Hom, I. Gut, M. Lathrop, S. Weigend, and H. Simianer. 2012. Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations. Anim. Genet. 43:419–428. doi:10.1111/j.1365-2052. 2011.02284.x.
  26. Kumar, V., S. Kumar Shukla, S. Kumar Singh, G. Goyal, J. Mathew, and D. Sharma. 2015. Genetic Diversity and Phylogenetic Relationship Analysis between Red Jungle Fowl and Domestic Chicken using AFLP Markers. J. Poult. Sci. 52:94–100. doi: 10.2141/ jpsa.0140145.
  27. Nie, C., P. Almeida, Y. Jia, H. Bao, Z. Ning, and L. Qu. 2019. Genome-Wide Single-Nucleotide Polymorphism Data Unveil Admixture of Chinese Indigenous Chicken Breeds with Commercial Breeds. Genome Biol. Evol. 11:1847–1856. doi:10.1093/ gbe/evz128.
  28. Tekaia, F. 2016. Genome Data Exploration Using Correspondence Analysis. Bioinform. Biol. Insights. 10:59–72. doi: 10.4137/BBI.S39614.
  29. Argüellesa, M., C. Benavidesa, and I. Fernándeza. 2014. A new approach to the identification of regional clusters: hierarchical clustering on principal components. Appl. Econ. 46:2511–2519. doi:10.1080/00036846.2014.904491.
  30. Chanana, S., C. S. Thomas, F. Zhang, S. R. Rajski, and T. S. Bugni. 2020. hcapca: Automated Hierarchical Clustering and Principal Component Analysis of Large Metabolomic Datasets in R. Metabolites. 10: 297. doi:10.3390/metabo1007029

Refbacks

  • There are currently no refbacks.