Dian Afifah Rahmawati, Eka Oktariyanto Nugroho, Muhammad Syahril Badri Kusuma, M. Cahyono, Imroatul C. Juliana, Taufik Ari Gunawan


Drought occurs quite often in Indonesia, closely related to water availability for community needs. One of the districts in West Java Province experiencing drought problems is Karawang district, where the RWH (Rainwater Harvesting) concept will be applied. This study aimed to analyze the risk of drought-related to applying the potential RWH in reducing drought risk. This study only focuses on meteorological drought, determined by SPI (Standardized Precipitation Index). Identification of potential areas for the application of RWH is carried out using the Weighted Method Overlay approach in the Geographic Information System (GIS), which was modified by adding a parameter of potential drought hazard. The potential reliability of RWH, as seen from Volumetric Reliability (VR) for supplying the average water requirement of MCK (Bath Washing Toilet) per year, indicates that most of the Karawang district area is potential for applying RWH. The results of adding the potential drought hazard parameters on applying the RWH concept show the decreasing area of very potential and potential category areas into 5,38%, the increase of drought resistance capacity is 17.5%, and the risk-reducing to 8.3%. Those results are due to the changes in the area of drought in the risk analysis. The assumptions of 60 rainy days on the average rainy day in a year and all households making RWH storage systems were used in the analysis. The results of this study can be used as a first step to see the potential of RWH in Karawang Regency both in terms of area and reliability.


Risk, Drought, RWH, Karawang

Full Text:



Adham, A, Sayl, K. N, Abed, R, Abdeladhim, M. A, Wesseling, J. G., Riksen, M, Fleskens, L, Karim, U dan Ritsema, C J. (2018). “A GIS-Based Approach for Identifying Potential Sites for Harvesting Rainwater in The Western Desert of Iraq”. International Soil and Water Conservation Research, Vol. 6, No. 4, 297–304.

Bernasconi, M., Choirat, C., & Seri, R. (2010). The analytic hierarchy process and the theory of measurement. Management Science, 56(4), 699–711. https://doi.org/10.1287/mnsc.1090.1123

Badan Pusat Statistik Kabupaten Karawang. (2021). Kabupaten Karawang Dalam Angka Tahun 2021. BPS Kabupaten Karawang, Karawang.

Balai Hidrologi dan Lingkungan Keairan. (2020). Laporan Akhir Pemodelan Kekeringan Untuk Mendukung SWMS. Balai Hidrologi dan Lingkungan Keairan, Bandung.

BNPB. (2016). Risiko bencana indonesia. BNPB, Jakarta.

Darmawan, K., Hani’ah, H. dan Suprayogi, A. (2017). “Analisis Tingkat Kerawanan Banjir Di Kabupaten Sampang Menggunakan Metode Overlay Dengan Scoring Berbasis Sistem Informasi Geografis”. Jurnal Geodesi Undip, Vol. 6, No. 1, 31–40.

Durga Rao, K. H. V., & Bhaumik, M. K. (2003). Spatial expert support system in selecting suitable sites for water harvesting structures — a case study of song watershed, Uttaranchal, India. Geocarto International, 18(4), 43–50. https://doi.org/10.1080/10106040308542288

Gould, J., dan Nissen-Peterson, E. (1999). Rainwater Catchment Systems for Domestic Supply: Design, Construction and Implementation. Intermediate Technology Publications, London.

Juliana, I. C., Kusuma, M. S. B, Cahyono,M, Khardana, H dan Martokusumo, W. (2017). “Performance of Rainwater Harvesting System Based on Roof Catchment Area and Storage Tank Capacity”. MATEC Web of Conferences, Kepulauan Bangka, 9-10 November 2016.

Juliana, I. C., Kusuma, M. S. B., Cahyono, M.Martokusumo, W. dan Kuntoro, A. A. (2017). “The Effect of Differences Rainfall Data Duration and Time Period in The Assessment of Rainwater Harvesting System Performance for Domestic Water Use”, AIP Conference Proceedings, Palembang, 14-17 Agustus 2017.

Juliana, I. C. (2019). Dasar-Dasar Penerapan Sistem Rainwater Harvesting (RWH). Program Studi Teknik Sipil Universitas Sriwijaya, Palembang.

Juliana, I. C., Alia, F., Falah, M. I. dan Gunawan, T. A. (2020). “Identifikasi Kawasan Potensial Untuk Penerapan Sistem Rainwater Harvesting (RWH) di Kota Palembang dengan Pendekatan Geographic Information System (GIS)”. Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil, Vol. 9, No. 1, 39–45.

Liaw, C. H., & Tsai, Y. L. (2004). Optimum storage volume of rooftop rain water harvesting systems for domestic use. Journal of the American Water Resources Association, 40(4), 901–912. https://doi.org/10.1111/j.1752-1688.2004.tb01054.x

M. Ashique, K. Baladeepa, M. Balapreethi, R. A. and J. R. (2021). SITE SELECTION FOR WATER HARVESTING STRUCTURES IN ANAIYUR. December.

Mahmoud, S. H. Alazba, A. A., Adamowski, J. dan El-Gindy, A. M. (2015). “GIS Methods for Sustainable Stormwater Harvesting and Storage Using Remote Sensing for Land Cover Data - Location Assessment”. Environmental Monitoring and Assessment, Vol. 187, No.9.

Mckee, T. B., Doesken, N. J. dan Kleist, J. (1993). “The Relationship of Drought Frequency and Duration to Time Scales”. Eighth Conference on Applied Climatology, Anaheim, 17-22 Januari 1993.

Ramakrishnan, D., Bandyopadhyay, A., & Kusuma, K. N. (2009). SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. Journal of Earth System Science, 118(4), 355–368. https://doi.org/10.1007/s12040-009-0034-5

Roebuck, R. . dan Ashley, R. (2007). “Predicting The Hydraulic and Life-cycle Cost Performance of Rainwater Harvesting Systems using a computer based modelling tool”, Water Practice & Technology, Vo. 2, No. 2.

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Services Sciences, 1(1), 83–98. https://doi.org/10.1108/JMTM-03-2014-0020 WMO. (1998). International Glossary of Hydrology. World Meteorological Organization, Geneva.


  • There are currently no refbacks.