Rekayasa Perangkat Lunak Aplikasi Presensi Mobile Menggunakan Metode Deep Learning
Abstract
Facial recognition research has its challenges due to faces complexity, ranging from facial expressions and certain conditions that make facial recognition an exciting research experiment. Moreover, many-oriented applications of machine learning have moved to devices edge, and-based facial recognition is no exception mobile. Seeing the ongoing development of facial pattern recognition algorithms such as Viola Jones, Backpropagation, this research uses the MobileFaceNet mobile CNN model which is currently popular to be implemented in the mobile-based facial recognition presence application at the Information and Computer Engineering Education (PTIK) FKIP UNS. The deep learning method is a method for understanding and classifying objects. In the developed application, a face is captured in an image. This research uses the help of the flutter framework and the Tensorflow Lite library to develop a presence application mobile facial recognition in real-time. This paper aims to determine the value of the memorization and generalization algorithms model of CNN MobileFaceNet on the application. A trial of the system has been carried out by involving 30 volunteers in the testing from 2016-2019 PTIK students by random sampling. Each test was carried out for 10 iterations. From the test results, the system memorization value is 84.5%. On the other hand, the generalization results get 70% in recognizing identical but not similar images correctly. In terms of memorization and generalization, these results are better than similar studies using backpropagation
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abidin, Z., & Arifudin, R. (2012). Pemanfaataan Biometrika Wajah Pada Sistem Presensi Menggunakan Backpropagation Neural Network. Sainteknol: Jurnal Sains Dan Teknologi, 10(2). https://journal.unnes.ac.id/nju/index.php/sainteknol/article/view/5558
Chen, S., Liu, Y., Gao, X., & Han, Z. (2018). MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. https://doi.org/10.48550/arXiv.1804.07573
Dewi, N., & Ismawan, F. (2021). Implementasi Deep Learning Menggunakan CNN Untuk Sistem Pengenalan Wajah. Faktor Exacta, 14(1), 34. https://doi.org/10.30998/faktorexacta.v14i1.8989
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Massachusetts: The MIT Press.
Harizahayu, H. (2021). Pengenalan Ekspresi Raut Wajah Berbasis Jaringan Saraf Tiruan Backpropagation Dengan Metode Principal Component Analysis. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 15(1), 037–046. https://doi.org/10.30598/barekengvol15iss1pp037-046
Harjoko, A., Ratnaningsih, T., Suryani, E., Wiharto, Palgunadi, S., & Prakisya, N. P. T. (2018). Classification of acute myeloid leukemia subtypes M1, M2 and M3 using active contour without edge segmentation and momentum backpropagation artificial neural network. MATEC Web of Conferences, 154. https://doi.org/10.1051/matecconf/201815401041
Muhammad, H., R. Eka Murtinugraha, & Sittati Musalamah. (2020). Pengembangan Media Pembelajaran E-Learning Berbasis Moodle Pada Mata Kuliah Metodologi Penelitian. Jurnal PenSil, 9(1), 54–60. https://doi.org/10.21009/jpensil.v9i1.13453
Prakisya, N. P. T., Liantoni, F., Hatta, P., Aristyagama, Y. H., & Setiawan, A. (2021). Utilization of K-nearest neighbor algorithm for classification of white blood cells in AML M4, M5, and M7. Open Engineering, 11(1), 662–668. https://doi.org/10.1515/eng-2021-0065
Purnama, B. (2019). Pengantar Machine Learning - Konsep dan Praktikum dengan COntoh Latihan Berbasis R dan Python (1st ed.). Bandung: Penerbit Informatika.
Puspitaningrum, D. (2006). Pengantar Jaringan Syaraf Tiruan (1st ed.). Yogyakarta: Andi.
Radityatama, R. G. (2017). Rancang Bangun Aplikasi Mobile Android Sistem Kehadiran Mahasiswa Melalui Pencocokan Wajah dengan Menggunakan Library Android Face Recognition with Deep Learning Studi Kasus Jurusan Teknik Informatika ITS. Retrieved from https://api.semanticscholar.org/CorpusID:64957924
Rahouma, K. H., & Mahfouz, A. Z. (2021). Design and Implementation of a Face Recognition System Based on API mobile vision and Normalized Features of Still Images. Procedia Computer Science, 194, 32–44. Elsevier B.V. https://doi.org/10.1016/j.procs.2021.10.057
Skansi, S. (2018). Introduction to Deep Learning. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73004-2
Suneetha K. and Challa, K. and A. J. and R. Y. and K. S. (2023). Comparative Analysis on Heart Disease Prediction Using Convolutional Neural Network with Adapted Backpropagation. In R. and W. S.-J. and N. R. Rao B. Narendra Kumar and Balasubramanian (Ed.), Intelligent Computing and Applications (pp. 465–477). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4162-7_44
Tran, H.-P., Smith, A., & Dimla, E. (2019). Offline Handwritten Text Recognition using Convolutional Recurrent Neural Network. 2019 International Conference on Advanced Computing and Applications (ACOMP), 51–56. https://doi.org/10.1109/ACOMP.2019.00015
Wei, X., & Li, C.-T. (2013). Fixation and Saccade Based Face Recognition from Single Image per Person with Various Occlusions and Expressions. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 70–75. https://doi.org/10.1109/CVPRW.2013.18
Yangsila, C. (2023). Android Application for Face Recognition and Verification using MobileFaceNets. Journal Of Information Science And Technology, 13(1), 1–9. https://doi.org/10.14456/jist.2023.1
DOI: https://doi.org/10.20961/jiptek.v17i1.76556
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nurcahya Pradana Taufik Prakisya, Ragil Setiawan, Rosihan Ari Yuana
This work is licensed under a Creative Commons Attribution 4.0 International License.