The Optimization of Savonius Helix Wind Turbine Cut-in Speed with the Variation of Blades-twist Rotor and Number of Blades
Abstract
Wind turbines are typically classified as Horizontal Axis Wind Turbines (HAWT) or Vertical Axis Wind Turbines (VAWT). VAWT has a superior ability to accelerate from rest to rotation than HAWT, allowing it to rotate the rotor even when the wind speed is low; additionally, the produced torque is relatively high. Using the Savonius helix VAWT is one of the numerous methods for enhancing VAWT performance. The effect of the number of blades and the blade twist of the rotor or the angle of rotation of the blades on the rotor from the bottom end to the top end on the speed cut generated by the VAWT Savonius helix was investigated experimentally. Variations in the number of blades used in the study included 2 and 3 blades, as well as 90°, 180°, 270°, and 360° for the rotor twist blades. In a wind tunnel, data was collected at wind speeds ranging from 0 to 5 m/s. The best performance research results were obtained With three blades, a twist angle of 180 degrees, and a cutting speed of 1.51 m/s. By modifying the Savonius Helix VAWT design in this study, it is possible to increase the efficiency and performance of turbines, mainly when used at low wind speeds, and the potential for using wind energy as a more efficient and sustainable alternative energy source.
Keywords
Full Text:
PDFReferences
Abdelaziz, K. R., Nawar, M. A. A., Ramadan, A., Attai, Y. A., & Mohamed, M. H. (2021). Performance Improvement of a Savonius Turbine by using Auxiliary Blades. Energy, 1–11. https://doi.org/10.1016/j.energy.2021.122575
Achebe, C. H., Okafor, O. C., & Obika, E. N. (2020). Design and Implementation of a Crossflow Turbine for Pico Hydropower Electricity Generation. Heliyon, 6, 2–13. https://doi.org/10.1016/j.heliyon.2020.e04523
Akwa, João Vicente, Vielmo, Horácio Antonio, & Petry, Adriane Prisco. (2012). A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, 16, 3054-3064. https://doi.org/10.1016/j.rser.2012.02.056.
Alit, I. B., Nurchayati, N., & Pamuji, S. H. (2016). Turbin Angin Poros Vertikal Tipe Savonius Bertingkat dengan Variasi Posisi Sudut. Dinamika Teknik Mesin, 6(2), 107–112. https://doi.org/10.29303/d.v6i2.13
Arfandi, A., & Supit, Y. (2019). Pengisian Depot Air Minum Isi Ulang Berbasis Arduino Uno. Jurnal Sistem Informasi dan Teknik Komputer, 4(1), 91–99. https://doi.org/10.51876/simtek.v4i1.53
Arinaldo, D., Prasojo, H., Tampubulon, A. P., Simamora, P., Kurniawan, D., Marciano, I., & Adiatma, J. C. (2021). Indonesia Energy Transition Outlook 2021. Jakarta: Institute for Essential Services Reform.
Azhar, M., & Satriawan, D. A. (2018). Implementasi Kebijakan Energi Baru dan Energi Terbarukan dalam Rangka Ketahanan Energi Nasional. Administrative Law and Governance Journal, 1(4), 398–412. https://doi.org/10.14710/alj.v1i4.398-412
Azirudin, T. (2019). Potensi Energi Angin di atas Bangunan Bertingkat di Pangkalan Kerinci, Kabupaten Pelalawan, Provinsi Riau. Ketenagalistrikan dan Energi Terbarukan, 18(1), 23–28.
Cendrawati, D. G., Soekarno, H., & Nasution, S. (2015). Potensi Energi Angin di Kabupaten Serdang Bedagai, Provinsi Sumatera Utara. Ketenagalistrikan dan Energi Terbarukan, 14(1), 15–28.
Damak, A., Driss, Z., & Abid, M. S. (2018). Optimization of the Helical Savonius Rotor through Wind Tunnel Experiments. Journal of Wind Engineering and Industrial Aerodynamics, 174, 80–93. https://doi.org/10.1016/j.jweia.2017.12.022
Gernowo, R., Kusworo, A., & Arifin, Z. (2016). Pengukuran Variabilitas CO2 dan Analisis Dampak Perubahan Iklim (Studi Kasus: Semarang). Indonesian Journal of Applied Physics, 3(02), 144–149. https://doi.org/10.13057/ijap.v3i02.1248
Gupta, S., & Haldar, S. (2017). A study on descriptive research design in engineering research. International Journal of Engineering Research and Development, 13(1), 1-5.
Hartanto, A. (2019). Making Indonesia. Jakarta: Kemenperin. https://doi.org/10.7591/9781501719370
Hikmat, Y., & Erwin, E. (2019). Studi Eksperimen Teknologi Pembangkit Listrik Tenaga Arus Laut (PT TAL) Menggunakan Savonius Bach Rotor. Komunikasi Fisika Indonesia, 16(2), 75–80. https://doi.org/10.31258/jkfi.16.2.75-80
Ismail, Y., & Saleh, C. (2015). Tenaga Listrik Sumbu Vertikal Savonius Portabel. Jurnal Industri Inovatif, 5(2), 19–24.
Johan, I. (2018). Laporan Kinerja Tahun 2018 Direktoral Jenderal PPMD. Jakrta: KESDM.
Kamoji, M., Kedare, S., & Prabhu, S. V. (2011). Experimental Investigations on Two and Three Stage Modified Savonius Rotor. Wind Engineering, 35(4), 483–510. https://doi.org/10.1260/0309-524X.35.4.483
Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and Experimental Study of a Helical Savonius Wind Turbine and a comparison with a Two-Stage Savonius Turbine. Renewable Energy, 148, 1–38. https://doi.org/10.1016/j.renene.2019.10.151
Latif, M. (2013). Efisiensi Prototipe Turbin Savonius pada Kecepatan Angin Rendah. Jurnal Rekayasa Elektrika, 10(3), 147–152. https://doi.org/10.17529/jre.v10i3.1030
Mahendra, B. (2013). Pengaruh Jumlah Sudu terhadap Unjuk Kerja Turbin Air Helikal Tipe Poros Vertikal. Thesis. Malang: Universitas Brawijaya.
Martinus, M., Susila, M. D., & Budiyono, M. (2011). Analisis Fenomena Penampang Alir Vertical Axis Wind Turbine (VAWT) Tipe Heliks Terhadap Kecepatan Angin Sebagai Pembangkit Listrik Alternatif Berskala Rumah Tangga. Mechanical Jurnal Ilmiah Teknik Mesin, 2(2).
Premkumar, T. M., Sivamani, S., Kirthees, E., Hariram, V., & Mohan, T. (2018). Data set on the experimental investigations of a helical Savonius style VAWT with and without end plates. Data in brief, 19, 1925-1932. https://doi.org/10.1016/j.dib.2018.06.113
Mohamed, M. H., Alqurashi, F., & Thévenin, D. (2021). Performance Enhancement of a Savonius Turbine under Effect of Frontal Guiding Plates. Energy Reports, 7, 6069–6076. https://doi.org/10.1016/j.egyr.2021.09.021
Rizki Firmansyah Setya Budi, S. (2013). Perhitungan Faktor Emisi CO2 PLTU Batubara dan PLTN. Jurnal Pengembangan Energi Nuklir Vol., 15, 1–8.
Rizkiyanto. (2015). Perancangan Turbin Angin Tipe Savonius Dua Tingkat dengan Kapasitas 100 Watt untuk Gedung Syariah Hotel Solo. Mekanika, 14(1), 8–12.
Saha, U. K., Thotla, S., & Maity, D. (2008). Optimum Design Configuration of Savonius Rotor through Wind Tunnel Experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96(8–9), 1359–1375. https://doi.org/10.1016/j.jweia.2008.03.005
Seralathan, S., Kumar, P. S. D., Singh, S., Raj, R., & Sathish, S. (2022). AIP Conference Proceedings Numerical Analysis of the One-Stage and Two-Stage Helical Savonius Vertical Axis Wind Turbine. 2385, 1–8. https://doi.org/https://doi.org/10.1063/5.0070780
Suharyani, Pambudi, S. H., Wibowo, J. L., & Pratiwi, N. I. (2019). Indonesia Energy Out Look 2019 (S. Abdurrahman & M. Pertiwi (eds.)). Jakarta: Sekretariat Jenderal Dewan Energi Nasional.
Sulaksono, B. (2019). Perancangan Sudu Tangkap terhadap Variasi Kecepatan Angin pada Turbin Angin. Teknobiz : Jurnal Ilmiah Program Studi Magister Teknik Mesin, 9(2), 1–7. https://doi.org/10.35814/teknobiz.v9i2.498
Sumiati, R., & Amri, K. (2014). Rancang Bangun Micro Turbin Angin Pembangkit Listrik untuk Rumah Tinggal di Daerah Kecepatan Angin Rendah. Jurnal Teknik Mesin, 6, 1–5.
Tirono, M. (2012). Pemodelan Turbin Cross-Flow untuk Diaplikasikan pada Sumber Air dengan Tinggi Jatuh dan Debit Kecil. Jurnal Neutrino, 112–120. https://doi.org/10.18860/neu.v0i0.1939
Wai-Hoo, A. Y., & Sovacool, B. K. (2014). The Economics of Wind Energy. In Sustainability matters: Asia’s energy concerns, green policies and environmental advocacy (Vol. 2). https://doi.org/10.1142/9789814546829_0026
Wibowo, K. M. (2018). Pitch dan Diffuser terhadap Performansi Horizontal Wind Turbine Sg-6043 Surakarta. Skripsi. Surakarta: Universitas Sebelas Maret.
DOI: https://doi.org/10.20961/jiptek.v16i2.71389
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Handy Prabowo, Danar Susilo Wijayanto, Taufik Wisnu Saputra, Mohd. Shafie bin Bakar
This work is licensed under a Creative Commons Attribution 4.0 International License.