The Relationship of In Vitro Anti-Inflammatory and Antioxidant Activity with Total Phenolic and Flavonoids Content of Tithonia diversifolia Leaves Ethanolic Extract and Fractions

Endah Puspitasari, Nuri Nuri, Siti Muslichah, Bawon Triatmoko, Dewi Dianasari

Abstract

A previous study showed that Tithonia diversifolia ethanolic extract has antiproliferative properties against HeLa cervical cancer cells. It has also shown anti-inflammatory properties in vivo, one of the approaches to cancer chemoprevention. This research aimed to determine the relation of in vitro anti-inflammatory and antioxidant activity of T. diversifolia leaves ethanolic extract and fractions with total phenolic and flavonoid content. The anti-inflammatory was evaluated in vitro using red blood cell (RBC) membrane stabilization and inhibition of protein denaturation method, while antioxidant activity was done using the DPPH method. Phytochemical screening was done using the TLC method. Total phenolic and flavonoid content were also counted using the colorimetry method. ANOVA followed by LSD post hoc, multiple regression analysis, and Pearson correlation were used to analyze the data. Compared to its fractions, the highest anti-inflammatory and antioxidant activity was obtained from T. diversifolia leaves ethanolic extract. The T. diversifolia leaves ethanolic extract contained terpenoids, alkaloids, polyphenols, and flavonoids. Overall, the antioxidant property contributed more to RBC membrane stabilization than protein denaturation inhibition. The phenolic and flavonoid content contributed most to antioxidant and red blood cell membrane stabilization rather than protein denaturation inhibition.

Keywords

Anti-inflammatory: Antioxidant; Phytochemical screening; Tithonia diversifolia leaves extract and fractions; Total phenolic and flavonoids content

Full Text:

PDF

References

Benjamaa, R., Elbouny, H., Errati, H., Moujanni, A., Kaushik, N., Gupta, R., Ennibi, O. K., Nasser, B., Choi, E. H., Kaushik, N. K., & Essamadi, A. (2024). Comparative evaluation of antioxidant activity, total phenolic content, anti-inflammatory, and antibacterial potential of Euphorbia-derived functional products. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1345340

Bindu, S., Mazumder, S., & Bandyopadhyay, U. (2020). Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. In Biochemical Pharmacology (Vol. 180). Elsevier Inc. https://doi.org/10.1016/j.bcp.2020.114147

Bouhlali, E. dine T., Hmidani, A., Bourkhis, B., Khouya, T., Ramchoun, M., Filali-Zegzouti, Y., & Alem, C. (2020). Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon, 6(2). https://doi.org/10.1016/j.heliyon.2020.e03436

Bourais, I., Elmarrkechy, S., Taha, D., Mourabit, Y., Bouyahya, A., El Yadini, M., Machich, O., El Hajjaji, S., El Boury, H., Dakka, N., & Iba, N. (2023). A Review on Medicinal Uses, Nutritional Value, and Antimicrobial, Antioxidant, Anti-Inflammatory, Antidiabetic, and Anticancer Potential Related to Bioactive Compounds of J. regia. Food Reviews International. https://doi.org/10.1080/87559129.2022.2094401

Christiana, R., Kristopo, H., & Limantara, L. (2008). Photodegradation and Antioxidant Activity of Chlorophyll a from Spirulina (Spirulina sp.) Powder. In Indo. J. Chem (Vol. 8, Issue 2).

Dalimartha, S. (1999). Atlas tumbuhan obat Indonesia. Trubus Agriwidya.

Eryani, I. G. A. P., Jayantari, M. W., & Wijaya, I. K. M. (2022). Sensitivity Analysis in Parameter Calibration of the WEAP Model for Integrated Water Resources Management in Unda Watershed. Civil Engineering and Architecture, 10(2). https://doi.org/10.13189/cea.2022.100206

Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and Cancer: Triggers, Mechanisms, and Consequences. In Immunity (Vol. 51, Issue 1, pp. 27–41). Cell Press. https://doi.org/10.1016/j.immuni.2019.06.025

Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. In Cancer Discovery (Vol. 12, Issue 1, pp. 31–46). American Association for Cancer Research Inc. https://doi.org/10.1158/2159-8290.CD-21-1059

Jongrungraungchok, S., Madaka, F., Wunnakup, T., Sudsai, T., Pongphaew, C., Songsak, T., & Pradubyat, N. (2023). In vitro antioxidant, anti-inflammatory, and anticancer activities of mixture Thai medicinal plants. BMC Complementary Medicine and Therapies, 23(1). https://doi.org/10.1186/s12906-023-03862-8

Katzung, B. G., von Zastrow, M., Holford, N. H., Correia, M. A., Pappano, A. J., Biaggioni, I., Robertson, D., Benowitz, N. L., Harvey, R. D., Grant, A. O., Sam, R., Ives, H., Pearce, D., Reid, I. A., Hwa, J., & et al. (2018). Basic & Clinical Pharmacology (B. G. Katzung, Ed.; 14th Edition). McGraw-Hill Education.

Lopes, D. C. D. X. P., De Oliveira, T. B., Viçosa, A. L., Valverde, S. S., & Ricci Júnior, E. (2021). Anti-Inflammatory Activity of the Compositae Family and Its Therapeutic Potential. In Planta Medica (Vol. 87, Issues 1–2, pp. 71–100). Georg Thieme Verlag. https://doi.org/10.1055/a-1178-5158

López-Cabeza, R., Rodríguez-Sabina, S., Reyes, C. P., Expósito, D. G., Giménez, C., Jiménez, I. A., Cabrera, R., & Bazzocchi, I. L. (2024). Bio-guided isolation of aromatic abietane diterpenoids from Salvia canariensis as biopesticides in the control of phytopathogenic fungi. Pest Management Science, 80(4), 2199–2207. https://doi.org/10.1002/ps.7958

Loucif, K., Benabdallah, H., Benchikh, F., Mehlous, S., Souici, C. Ben, & Amira, S. (2020). Total Phenolic Contents, DPPH Radical Scavenging and β-Carotene Bleaching Activities of Aqueous Extract from Ammoides atlantica. Journal of Drug Delivery and Therapeutics, 10(3-s), 196–198. https://doi.org/10.22270/jddt.v10i3-s.4151

Lubis, B., Saputri, I. N., Ajartha, R., Bangun, S. M. B., Pranata, C., Purba, N., & Turnip, N. U. M. Br. (2020). Anti-inflammatory Activity Test for Ethanol Extract Moon Flower (Tithonia diversifolia) Leaves to Male White Mice. Proceedings of the International Conference on Health Informatics and Medical Application Technology, 551–557. https://doi.org/10.5220/0009974705510557

Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. In Food Chemistry (Vol. 299). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2019.125124

Moulishankar, A. (2021). Significance of TLC and HPTLC in Phytochemical Screening of Herbal Drugs. In Article in Journal of Global Pharma Technology. www.jgpt.co.in

Mukaka, M. M. (2012). Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. In Malawi Medical Journal (Vol. 24, Issue 3). www.mmj.medcol.mw

Nasution, M.R., Ardhiyati, B., Tinggi, S., Riau, I. F., Kamboja, J., & Baru-Panam, S. (2019). Total Fenolik dan Flavonoid serta Aktivitas Antioksidan Ekstrak Etanol Daun Tenggek Burung (Eudia redlevi).

Nunes, C. dos R., Arantes, M. B., de Faria Pereira, S. M., da Cruz, L. L., de Souza Passos, M., de Moraes, L. P., Vieira, I. J. C., & de Oliveira, D. B. (2020). Plants as Sources of Anti-Inflammatory Agents. In Molecules (Vol. 25, Issue 16). MDPI AG. https://doi.org/10.3390/molecules25163726

Ozleyen, A., Yilmaz, Y. B., Donmez, S., Atalay, H. N., Antika, G., & Tumer, T. B. (2023). Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. In Journal of Cancer Research and Clinical Oncology (Vol. 149, Issue 5, pp. 2095–2113). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00432-022-04187-8

Phongpaichit, S., Nikom, J., Rungjindamai, N., Sakayaroj, J., Hutadilok-Towatana, N., Rukachaisirikul, V., & Kirtikara, K. (2007). Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunology and Medical Microbiology, 51(3), 517–525. https://doi.org/10.1111/j.1574-695X.2007.00331.x

Puspitasari, E., Ningsih, Y., Triatmoko, B., & Dianasari, D. (2022). Antiproliferative activity of ethanolic extract of kembang bulan (Tithonia diversifolia) leaf on HeLa cervical cancer cell line. Indonesian Journal of Cancer Chemoprevention, 13(1), 55–60.

Rini, S., Shweta, V., Vijender, S., & Sakshi, B. (2023). Impact of geographical location on the polyphenolic content of Nigella sativa seed extract and the relative anti-inflammatory and antioxidant potential thereof: A comparative study. Indian Journal of Natural Products and Resources, 14(1), 89–96. https://doi.org/10.56042/ijnpr.v14i1.1132

Saleem, A., Saleem, M., & Akhtar, M. F. (2020). Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. South African Journal of Botany, 128, 246–256. https://doi.org/10.1016/j.sajb.2019.11.023

Satria, R., Hakim, A. R., & Darsono, P. V. (2022). Penetapan Kadar Flavonoid Total Dari Fraksi n-Heksana Ekstrak Daun Gelinggang dengan Metode Spektrofotometri UV-Vis. Journal of Engineering, Technology, and Applied Science, 4(1), 33–46. https://doi.org/10.36079/lamintang.jetas-0401.353

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763

Souto, A. L., Tavares, J. F., Da Silva, M. S., De Diniz, M. F. F. M., De Athayde-Filho, P. F., & Barbosa Filho, J. M. (2011). Anti-inflammatory activity of alkaloids: An update from 2000 to 2010. In Molecules (Vol. 16, Issue 10, pp. 8515–8534). https://doi.org/10.3390/molecules16108515

Subedi, L., & Yumnam, S. (2021). Terpenoids from abies holophylla attenuate lps-induced neuroinflammation in microglial cells by suppressing the jnk-related signaling pathway. International Journal of Molecular Sciences, 22(2), 1–12. https://doi.org/10.3390/ijms22020965

Tamfu, A. N., Roland, N., Mfifen, A. M., Kucukaydin, S., Gaye, M., Botezatu, A. V., Emin Duru, M., & Dinica, R. M. (2022). Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth. Arabian Journal of Chemistry, 15(4). https://doi.org/10.1016/j.arabjc.2021.103675

Tu, Z., Zhong, Y., Hu, H., Shao, D., Haag, R., Schirner, M., Lee, J., Sullenger, B., & Leong, K. W. (2022). Design of therapeutic biomaterials to control inflammation. In Nature Reviews Materials (Vol. 7, Issue 7, pp. 557–574). Nature Research. https://doi.org/10.1038/s41578-022-00426-z

World Health Organization. (2022). WHO Statistics 2022: Monitoring Health for the SDGs. http://apps.who.int/bookorders.

Xin, Y. J., Choi, S., Roh, K. B., Cho, E., Ji, H., Weon, J. B., Park, D., Whang, W. K., & Jung, E. (2021). Anti-inflammatory activity and mechanism of isookanin, isolated by bioassay-guided fractionation from bidens pilosa l. Molecules, 26(2). https://doi.org/10.3390/molecules26020255

Yesmin, S., Paul, A., Naz, T., Rahman, A. B. M. A., Akhter, S. F., Wahed, M. I. I., Emran, T. Bin, & Siddiqui, S. A. (2020). Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinical Phytoscience, 6(1). https://doi.org/10.1186/s40816-020-00207-7

Yu, X., Yang, T., Qi, Q., Du, Y., Shi, J., Liu, X., Liu, Y., Zhang, H., Zhang, Z., & Yan, N. (2021). Comparison of the contents of phenolic compounds including flavonoids and antioxidant activity of rice (Oryza sativa) and Chinese wild rice (Zizania latifolia). Food Chemistry, 344. https://doi.org/10.1016/j.foodchem.2020.128600

Zhang, N., Wang, M., Li, Y., Zhou, M., Wu, T., & Cheng, Z. (2021). TLC–MS identification of alkaloids in Leonuri Herba and Leonuri Fructus aided by a newly developed universal derivatisation reagent optimised by the response surface method. Phytochemical Analysis, 32(3), 242–251. https://doi.org/10.1002/pca.2970

Zhao, G. J., Xi, Z. X., Chen, W. S., Li, X., Sun, L., & Sun, L. N. (2012). Chemical constituents from Tithonia diversifolia and their chemotaxonomic significance. Biochemical Systematics and Ecology, 44, 250–254. https://doi.org/10.1016/j.bse.2012.06.019

Zulkifli, S. A., Gani, S. S. A., Zaidan, U. H., & Halmi, M. I. E. (2020). Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules, 25(4). https://doi.org/10.3390/molecules25040787

Refbacks

  • There are currently no refbacks.