Antidiabetic Potential and Metabolite Profile of Leaf and Stem Extract of Castanopsis tungurrut (Blume) A.DC.

Bilqis Zahra Nabila, Muhammad Imam Surya, Intani Quarta Lailaty, Frisca Damayanti, Tri Rini Nuringtyas

Abstract

Diabetes mellitus is a metabolic disorder caused by high blood sugar levels. One species in the Castanopsis genus is proven with a hypoglycemic effect. Therefore, the study aimed to discover the potential of Castanopsis tungurrut as an antidiabetic. Sample extraction, α-amylase inhibition, glucose diffusion analysis, GC-MS analysis, and molecular docking were applied in this study. Maceration of the leaf ethanol extract showed the highest yield value of 21.08%, while the stem extract was 14.04%. Leaf ethanol extract and stem ethyl acetate extract showed the highest inhibiting α-amylase activity with an inhibition value of 33.74%±1.54 and 34.45%±1.08 at 1 mg/mL concentration. The glucose entrapment assay showed that these two extracts could inhibit the diffusion of glucose in the dialysis bag. The final result was glucose concentration in dialysate for the two extracts of 0.114±0.001 mg/mL and 0.116±0.001 mg/mL which was lower than acarbose in 0.120±0.004 mg/mL. GC-MS analysis showed 6 metabolites in leaf ethanol extract and 22 metabolites in stems ethyl acetate extract from an alkane, salicylic, cinnamic, terpene, steroid, and fatty acid. Molecular docking resulting between the compounds with α-amylase enzymes complex showed γ-sitosterol and ß-bisabolene from C. tungurrut extract have the potential to be developed as an antidiabetic drug due to its good inhibitory activity with binding affinity values of -9.1 and -6.9 that considered better and quite close to acarbose as control of -7.7.

Keywords

Antidiabetic; Castanopsis tungurrut; Diabetes mellitus; Enzyme inhibition; Gass Chromatography-Mass Spectrometry (GC-MS)

Full Text:

PDF

References

Alkandahri, M. Y., Nisrihadi, L., & Salim, E. (2016). Secondary Metabolites and Antioxidant Activity of Methanol Extract of Castanopsis costata Leaves. Pharmacology and Clinical Pharmacy Research, 1(3), 1–6. https://doi.org/10.15416/pcpr.2016.1.3.98

Aly, H. F., & Mantawy, M. M. (2012). Comparative effects of zinc, selenium and vitamin E or their combination on carbohydrate metabolizing enzymes and oxidative stress in streptozotocin induced-diabetic rats. European Review for Medical and Pharmacological Sciences, 16(1), 66–78. https://pubmed.ncbi.nlm.nih.gov/22338550/

Anugrahini, C. P. H., & Wahyuni, A. S. (2021). Narrative Review : Aktivitas Antidiabetes Tanaman Tradisional di Pulau Jawa. Pharmacon: Jurnal Farmasi Indonesia., 2(1), 120–131. https://doi.org/DOI: 10.23917/pharmacon.v0i0.14999

Bahtiarsyah, A. A., Hidayati, L., Wijayanti, N., & Nuringtyas, T. R. (2023). Synergistic Activity of Cinnamomum burmannii (Nees & T. Nees) Blume and Aquilaria malaccensis Lamk. Extracts for Antidiabetic Study. Indonesian Biomedical Journal, 15(2), 132–140. https://doi.org/10.18585/inabj.v15i2.2132

Betteng, R., Pangemanan, D., & Mayulu, N. (2014). Analisis Faktor Resiko Penyebab Terjadinya Diabetes Melitus Tipe 2 Pada Wanita Usia Produktif Dipuskesmas Wawonasa. Jurnal E-Biomedik, 2(2). https://doi.org/10.35790/ebm.2.2.2014.4554

Calvaryni, N. M., & Nuringtyas, T. R. (2022). Effects of fungicide treatment on metabolite profiles of Aquilaria malaccensis. Biocatalysis and Agricultural Biotechnology, 43, 102407. https://doi.org/https://doi.org/10.1016/j.bcab.2022.102407

Da Silva, D., Casanova, L. M., Marcondes, M. C., Espindola-Netto, J. M. H., Paixão, L. P., De Melo, G. O., Zancan, P., Sola-Penna, M., & Costa, S. S. (2014). Antidiabetic activity of Sedum dendroideum: Metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin. IUBMB Life, 66(5), 361–370. https://doi.org/10.1002/iub.1270

Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of Diabetes and Diabetes-Related Complications. Physical Therapy, 88(11), 1255. https://doi.org/https://doi.org/10.2522/ptj.20080020

Dosoky, N. S., & Setzer, W. N. (2018). Chemical composition and biological activities of essential oils of curcuma species. Nutrients, 10(9), 10–17. https://doi.org/10.3390/nu10091196

Gaspersz, N., Fransina, E. G., & Ngarbingan, A. R. (2022). Uji Aktivitas Penghambatan Enzim α-Amilase dan Glukoamilase dari Ekstrak Etanol Daun Kirinyuh (Chromolaena odorata L.). Jurnal Kimia Mulawarman, 19(2), 51. https://doi.org/10.30872/jkm.v19i2.1120

Hilma, R., Gustina, N., & Syahri, J. (2020). Pengukuran Total Fenolik, Flavonoid, Aktivitas Antioksidan dan Antidiabetes Ekstrak Etil Asetat Daun Katemas (Euphorbia heterophylla, L.) Secara In Vitro dan In Silico Melalui Inhibisi Enzim α-Glukosidase. ALCHEMY Jurnal Penelitian Kimia, 16(2), 240–249. https://doi.org/10.20961/alchemy.16.2.40087.240-249

Hmidene, A. Ben, Smaoui, A., Abdelly, C., Isoda, H., & Shigemori, H. (2017). Effect of O-methylated and glucuronosylated flavonoids from Tamarix gallica on α-glucosidase inhibitory activity: Structure-activity relationship and synergistic potential. Bioscience, Biotechnology and Biochemistry, 81(3), 445–448. https://doi.org/10.1080/09168451.2016.1254538

Ilyas, I., Surya, M. I., Lailaty, I. Q., Damayanti, F., & Nuringtyas, T. R. (2023). Metabolite Profile and Antibacterial Potential of Leaf And Stem Extract Castanopsis tungurrut (Blume) A.DC. against Escherichia coli and Staphylococcus aureus. BIO Web of Conferences, 75, 4–10. https://doi.org/10.1051/bioconf/20237503002

Kim, H. W., Park, E. J., Cho, H. M., An, J. P., Chin, Y. W., Kim, J., Sung, S. H., & Oh, W. K. (2020). Glucose Uptake-Stimulating Galloyl Ester Triterpenoids from Castanopsis sieboldii. Journal of Natural Products, 83(10), 3093–3101. https://doi.org/10.1021/acs.jnatprod.0c00645

Prakash, S., Bindu, M., Prasad, A. S., Timilsina, H., Chandra, B. R., Jiban, S., & Pushpa, B. (2020). Total Phenolic and Flavonoids Contents, Antioxidant Activities, Phytochemical and Nutritional Analysis of Castanopsis Indica (Indian Chestnut). Natural Resources and Sustainable Development, 10(2), 175–187. https://doi.org/10.31924/nrsd.v10i2.053

Qujeq, D., & Babazadeh, A. (2013). The Entrapment Ability of Aqueous and Ethanolic Extract of Teucrium Polium : Glucose Diffusion into the External Solution. Int J Mol Cell Med, 2, 93–96. https://pubmed.ncbi.nlm.nih.gov/24551797/

Rautela, I., Dheer, P., & Sharma, N. (2018). GC-MS Analysis of Plant Leaf Extract of Datura stramonium In Different Solvent System. European Journal of Biomedical and Pharmaceutical Sciences, 5(10), 236–245. https://www.ejbps.com/ejbps/abstract_id/5071

Samocha-Bonet, D., Wu, B., & Ryugo, D. K. (2021). Diabetes mellitus and hearing loss: A review. Ageing Research Reviews, 71, 101423. https://doi.org/10.1016/j.arr.2021.101423

Savitri, I., Suhendra, L., & Made Wartini, N. (2017). PENGARUH Jenis Pelarut Pada Metode Maserasi Terhadap Karakteristik Ekstrak Sargassum polycystum. Jurnal Rekayasa Dan Manajemen Agroindustri, 5(3), 93–101. https://ojs.unud.ac.id/index.php/jtip/article/view/35504

Sharma, P., Joshi, T., Mathpal, S., Chandra, S., & Tamta, S. (2022). In silico identification of antidiabetic target for phytochemicals of A. marmelosand mechanistic insights by molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 40(21), 10543–10560. https://doi.org/10.1080/07391102.2021.1944910

Smorowska, A. J., Żołnierczyk, A. K., Nawirska-Olszańska, A., Sowiński, J., & Szumny, A. (2021). Nutritional Properties and in Vitro Antidiabetic Activities of Blue and Yellow Corn Extracts: A Comparative Study. Journal of Food Quality, 2021. https://doi.org/10.1155/2021/8813613

Suvarna, R., Shenoy, R. P., Hadapad, B. S., & Nayak, A. V. (2021). Effectiveness of polyherbal formulations for the treatment of type 2 Diabetes mellitus - A systematic review and meta-analysis. Journal of Ayurveda and Integrative Medicine, 12(1), 213–222. https://doi.org/10.1016/j.jaim.2020.11.002

Torres-Naranjo, M., Suárez, A., Gilardoni, G., Cartuche, L., Flores, P., & Morocho, V. (2016). Chemical constituents of Muehlenbeckia tamnifolia (Kunth) meisn (Polygonaceae) and Its in Vitro α-amilase and α-glucosidase inhibitory activities. Molecules, 21(11). https://doi.org/10.3390/molecules21111461

Verdiana, M., Widarta, I. W. R., & Permana, I. D. G. M. (2018). Pengaruh Jenis Pelarut Pada Ekstraksi Menggunakan Gelombang Ultrasonik Terhadap Aktivitas Antioksidan Ekstrak Kulit Buah Lemon (Citrus limon (Linn.) Burm F.). Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 7(4), 213. https://doi.org/10.24843/itepa.2018.v07.i04.p08

Wickramaratne, M. N., Punchihewa, J. C., & Wickramaratne, D. B. M. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of adenanthera pavonina. BMC Complementary and Alternative Medicine, 16(1), 1–5. https://doi.org/10.1186/s12906-016-1452-y

Wulandari, L., Nuri, Pratoko, D. K., Khairunnisa, P., & Muyasaroh, L. (2021). Determination α-amylase inhibitor activity of methanol extract of coffee leaves using UV-Vis spectrophotometric method and validation. IOP Conference Series: Earth and Environmental Science, 743(1), 0–10. https://doi.org/10.1088/1755-1315/743/1/012094

Younas, J., & Hussain, F. (2014). Antidiabetic Evaluation of Allium sativum L. International Journal of Chemical and Biochemical Sciences, 5(2014), 22–25. www.iscientific.org/Journal.html

Zhang, B., Lv, C., Li, W., Cui, Z., Chen, D., Cao, F., Miao, F., & Zhou, L. (2015). Ethyl cinnamate derivatives as promising high-efficient acaricides against Psoroptes cuniculi: Synthesis, bioactivity and structure-activity relationship. Chemical and Pharmaceutical Bulletin, 63(4), 255–262. https://doi.org/10.1248/cpb.c14-00765

Refbacks

  • There are currently no refbacks.