Cholecalciferol Effects on Lipid Profile of Experimental Animals: A Scoping Review
Abstract
Vitamin D is an essential nutrient that has various beneficial effects on the human body. The results of cholecalciferol supplementation are varied, and there has yet to be a comprehensive review regarding its effect on animal models. Therefore, this scoping review aims to summarize the evidence regarding the effect of cholecalciferol (vitamin D3) supplementation on the lipid profiles of animal subjects. PubMed, Scopus, and DOAJ were searched for original research articles published until 2022. Studies were included if they were experimental studies, cholecalciferol was used as a supplement, and the changes in the lipid profile were analyzed. A total of 260 articles were collected, of which 250 articles were excluded, and 10 articles were included for qualitative synthesis. All studies used oral routes to supplement cholecalciferol with various doses and duration ranging from several weeks to several months. Most studies reported reduced lipid parameters in serum or organ-specific animals supplemented with cholecalciferol. As conclusion, cholecalciferol reduces lipid content in animal subjects and may have a beneficial effect on populations with metabolic diseases such as diabetes and dyslipidemia. Further research is required to explore the mechanism of how cholecalciferol affects the lipid profiles of experimental animals.
Keywords
Full Text:
PDFReferences
Abd El-Haleim, E. A., & Sallam, N. A. (2022). Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam Clin Pharmacol, 36(2), 338-349. https://doi.org/10.1111/fcp.12720
Abeer, A., and Suzan, M. M. (2019). Vitamin D Supplementation Reduces Serum Chemerin Level in Gestational Diabetes Mellitus Rat Model. The Medical Journal of Cairo University, 87, 3069-3080. https://doi.org/10.21608/mjcu.2019.59509
Aon, Y. S. A., Kadhim, S. J., Khafaji, I. H. M. A., dan Tahir, N. T. (2022). The Role of Vitamin D3 in Improving Lipid Profile in Type 2 Diabetes Patients with Cardio Vascular Disease. Indian Journal of Forensic Medicine & Toxicology, 16(1), 1278–1285. https://doi.org/10.37506/ijfmt.v16i1.17672
Atia, T., Iqbal, M. Z., Fathy Ahmed, H., Sakr, H. I., Abdelzaher, M. H., Morsi, D. F., & Metawee, M. E. (2022). Vitamin D Supplementation Could Enhance the Effectiveness of Glibenclamide in Treating Diabetes and Preventing Diabetic Nephropathy: A Biochemical, Histological and Immunohistochemical Study. J Evid Based Integr Med, 27, 2515690x221116403. https://doi.org/10.1177/2515690x221116403
Atmani, H., Chappard, D., & Basle, M. F. (2003). Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem, 89(2), 364-372. https://doi.org/10.1002/jcb.10507
Calgaroto, N. S., da Costa, P., Cardoso, A. M., Pereira, L. B., Vieira, J. M., Dalenogare, D., Pelinson, L. P., Baldissarelli, J., Morsch, V. M., & Schetinger, M. R. (2015). Vitamin D₃ prevents the increase in ectonucleotidase activities and ameliorates lipid profile in type 1 diabetic rats. Mol Cell Biochem, 405(1-2), 11-21. https://doi.org/10.1007/s11010-015-2390-6
Elmi, C., Fan, M. M., Le, M., Cheng, G., & Khalighi, K. (2021). Association of serum 25-Hydroxy Vitamin D level with lipid, lipoprotein, and apolipoprotein level. J Community Hosp Intern Med Perspect, 11(6), 812-816. https://doi.org/10.1080/20009666.2021.1968571
Elseweidy, M. M., Ali, S. I., Shershir, N. I., Ali, A. E. A., & Hammad, S. K. (2022). Vitamin D3 intake as modulator for the early biomarkers of myocardial tissue injury in diabetic hyperlipidaemic rats. Arch Physiol Biochem, 128(3), 628-636. https://doi.org/10.1080/13813455.2020.1716015
Felicidade, I., Sartori, D., Coort, S. L. M., Semprebon, S. C., Niwa, A. M., D'Epiro, G. F. R., Biazi, B. I., Marques, L. A., Evelo, C. T., Mantovani, M. S., & Ribeiro, L. R. (2018). Role of 1α,25-Dihydroxyvitamin D3 in Adipogenesis of SGBS Cells: New Insights into Human Preadipocyte Proliferation. Cell Physiol Biochem, 48(1), 397-408. https://doi.org/10.1159/000491770
Hedayatnia, M., Asadi, Z., Zare-Feyzabadi, R., Yaghooti-Khorasani, M., Ghazizadeh, H., Ghaffarian-Zirak, R., Nosrati-Tirkani, A., Mohammadi-Bajgiran, M., Rohban, M., Sadabadi, F., Rahimi, H. R., Ghalandari, M., Ghaffari, M. S., Yousefi, A., Pouresmaeili, E., Besharatlou, M. R., Moohebati, M., Ferns, G. A., Esmaily, H., & Ghayour-Mobarhan, M. (2020). Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis, 19(1), 42. https://doi.org/10.1186/s12944-020-01204-y
Ivkovic, T., Tepavcevic, S., Romić, S., Stojiljkovic, M., Kostić, M., Stanišić, J., Koricanac, G., & Culafic, T. (2022). Cholecalciferol modulates fatty acid metabolism and calcium homeostasis in the heart. https://doi.org/10.21203/rs.3.rs-2226189/v1
Kim, M. R., & Jeong, S. J. (2019). Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites, 9(7). https://doi.org/10.3390/metabo9070125
Lee, H., Lee, H., & Lim, Y. (2020). Vitamin D(3) improves lipophagy-associated renal lipid metabolism and tissue damage in diabetic mice. Nutr Res, 80, 55-65. https://doi.org/10.1016/j.nutres.2020.06.007
Lim, H., Lee, H., & Lim, Y. (2021). Effect of vitamin D(3) supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp Biol Med (Maywood), 246(10), 1139-1147. https://doi.org/10.1177/1535370220987524
Marino, M., Venturi, S., Del Bo, C., Møller, P., Riso, P., & Porrini, M. (2022). Vitamin D Counteracts Lipid Accumulation, Augments Free Fatty Acid-Induced ABCA1 and CPT-1A Expression While Reducing CD36 and C/EBPβ Protein Levels in Monocyte-Derived Macrophages. Biomedicines, 10(4). https://doi.org/10.3390/biomedicines10040775
Morvaridzadeh, M., Agah, S., Alibakhshi, P., Heydari, H., Hoseini, A. S., Palmowski, A., Toupchian, O., Abdollahi, S., Rezamand, G., & Heshmati, J. (2021). Effects of Calcium and Vitamin D Co-supplementation on the Lipid Profile: A Systematic Review and Meta-analysis. Clin Ther, 43(9), 274-296. https://doi.org/10.1016/j.clinthera.2021.07.018
Mosca, S., Araújo, G., Costa, V., Correia, J., Bandeira, A., Martins, E., Mansilha, H., Tavares, M., & Coelho, M. P. (2022). Dyslipidemia Diagnosis and Treatment: Risk Stratification in Children and Adolescents. J Nutr Metab, 2022, 4782344. https://doi.org/10.1155/2022/4782344
Philouze, C., Martin, J. C., Riva, C., Marziou, A., Defoort, C., Couturier, C., Berton, T., Astier, J., Jover, B., Gayrard, N., Reboul, C., Gayrard, S., Landrier, J. F., & Obert, P. (2022). Vitamin D(3) Supplementation Alleviates Left Ventricular Dysfunction in a Mouse Model of Diet-Induced Type 2 Diabetes: Potential Involvement of Cardiac Lipotoxicity Modulation. Cardiovasc Drugs Ther, 36(2), 245-256. https://doi.org/10.1007/s10557-021-07143-9
Quach, H. P., Dzekic, T., Bukuroshi, P., & Pang, K. S. (2018). Potencies of vitamin D analogs, 1α-hydroxyvitamin D(3) , 1α-hydroxyvitamin D(2) and 25-hydroxyvitamin D(3) , in lowering cholesterol in hypercholesterolemic mice in vivo. Biopharm Drug Dispos, 39(4), 196-204. https://doi.org/10.1002/bdd.2126
Riek, A. E., Oh, J., & Bernal-Mizrachi, C. (2013). 1,25(OH)2 vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients. J Steroid Biochem Mol Biol, 136, 309-312. https://doi.org/10.1016/j.jsbmb.2012.12.019
Ruiz-Ramírez, A., López-Acosta, O., Barrios-Maya, M. A., & El-Hafidi, M. (2016). Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins. Oxid Med Cell Longev, 2016, 9340654. https://doi.org/10.1155/2016/9340654
Sosa Henríquez, M., & Gómez de Tejada Romero, M. J. (2020). Cholecalciferol or Calcifediol in the Management of Vitamin D Deficiency. Nutrients, 12(6). https://doi.org/10.3390/nu12061617
Surdu, A. M., Pînzariu, O., Ciobanu, D. M., Negru, A. G., Căinap, S. S., Lazea, C., Iacob, D., Săraci, G., Tirinescu, D., Borda, I. M., & Cismaru, G. (2021). Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines, 9(2). https://doi.org/10.3390/biomedicines9020172
Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., Godfrey, C. M., Macdonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö., & Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med, 169(7), 467-473. https://doi.org/10.7326/m18-0850
Tsuruki, F., Moriuchi, S., & Hosoya, N. (1986). Effect of dietary vitamin D3 and cadmium on the lipid composition of rat intestinal brush border membranes. J Nutr Sci Vitaminol (Tokyo), 32(2), 191-204. https://doi.org/10.3177/jnsv.32.191
Wahba, N. S., Ghareib, S. A., Abdel-Ghany, R. H., Abdel-Aal, M., & Alsemeh, A. E. (2021). Renoprotective effects of vitamin D3 supplementation in a rat model of metabolic syndrome. Eur J Nutr, 60(1), 299-316. https://doi.org/10.1007/s00394-020-02249-6
Wang, W., Zhang, L., Battiprolu, P. K., Fukushima, A., Nguyen, K., Milner, K., Gupta, A., Altamimi, T., Byrne, N., Mori, J., Alrob, O. A., Wagg, C., Fillmore, N., Wang, S. H., Liu, D. M., Fu, A., Lu, J. Y., Chaves, M., Motani, A., Ussher, J. R., Reagan, J. D., Dyck, J. R. B., & Lopaschuk, G. D. (2019). Malonyl CoA Decarboxylase Inhibition Improves Cardiac Function Post-Myocardial Infarction. JACC Basic Transl Sci, 4(3), 385-400. https://doi.org/10.1016/j.jacbts.2019.02.003
Yanai, H., & Yoshida, H. (2021). Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med, 3(1), 15-23. https://doi.org/10.35772/ghm.2020.01078
Zhang, W., Yi, J., Liu, D., Wang, Y., Jamilian, P., Gaman, M. A., Prabahar, K., & Fan, J. (2022). The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: a meta-analysis and systematic review of randomized controlled trials. Exp Gerontol, 161, 111709. https://doi.org/10.1016/j.exger.2022.111709.
Refbacks
- There are currently no refbacks.