Cholecalciferol Effects on Lipid Profile of Experimental Animals: A Scoping Review

Dea Anenta Veonika, Budiyanti Wiboworini, Muthmainah Muthmainah

Abstract

Vitamin D is an essential nutrient that has various beneficial effects on the human body. The results of cholecalciferol supplementation are varied, and there has yet to be a comprehensive review regarding its effect on animal models. Therefore, this scoping review aims to summarize the evidence regarding the effect of cholecalciferol (vitamin D3) supplementation on the lipid profiles of animal subjects. PubMed, Scopus, and DOAJ were searched for original research articles published until 2022. Studies were included if they were experimental studies, cholecalciferol was used as a supplement, and the changes in the lipid profile were analyzed. A total of 260 articles were collected, of which 250 articles were excluded, and 10 articles were included for qualitative synthesis. All studies used oral routes to supplement cholecalciferol with various doses and duration ranging from several weeks to several months. Most studies reported reduced lipid parameters in serum or organ-specific animals supplemented with cholecalciferol. As conclusion, cholecalciferol reduces lipid content in animal subjects and may have a beneficial effect on populations with metabolic diseases such as diabetes and dyslipidemia. Further research is required to explore the mechanism of how cholecalciferol affects the lipid profiles of experimental animals.

Keywords

Cholecalciferol; Cholesterol; Lipid

Full Text:

PDF

References

Abd El-Haleim, E. A., & Sallam, N. A. (2022). Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam Clin Pharmacol, 36(2), 338-349. https://doi.org/10.1111/fcp.12720

Abeer, A., and Suzan, M. M. (2019). Vitamin D Supplementation Reduces Serum Chemerin Level in Gestational Diabetes Mellitus Rat Model. The Medical Journal of Cairo University, 87, 3069-3080. https://doi.org/10.21608/mjcu.2019.59509

Aon, Y. S. A., Kadhim, S. J., Khafaji, I. H. M. A., dan Tahir, N. T. (2022). The Role of Vitamin D3 in Improving Lipid Profile in Type 2 Diabetes Patients with Cardio Vascular Disease. Indian Journal of Forensic Medicine & Toxicology, 16(1), 1278–1285. https://doi.org/10.37506/ijfmt.v16i1.17672

Atia, T., Iqbal, M. Z., Fathy Ahmed, H., Sakr, H. I., Abdelzaher, M. H., Morsi, D. F., & Metawee, M. E. (2022). Vitamin D Supplementation Could Enhance the Effectiveness of Glibenclamide in Treating Diabetes and Preventing Diabetic Nephropathy: A Biochemical, Histological and Immunohistochemical Study. J Evid Based Integr Med, 27, 2515690x221116403. https://doi.org/10.1177/2515690x221116403

Atmani, H., Chappard, D., & Basle, M. F. (2003). Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem, 89(2), 364-372. https://doi.org/10.1002/jcb.10507

Calgaroto, N. S., da Costa, P., Cardoso, A. M., Pereira, L. B., Vieira, J. M., Dalenogare, D., Pelinson, L. P., Baldissarelli, J., Morsch, V. M., & Schetinger, M. R. (2015). Vitamin D₃ prevents the increase in ectonucleotidase activities and ameliorates lipid profile in type 1 diabetic rats. Mol Cell Biochem, 405(1-2), 11-21. https://doi.org/10.1007/s11010-015-2390-6

Elmi, C., Fan, M. M., Le, M., Cheng, G., & Khalighi, K. (2021). Association of serum 25-Hydroxy Vitamin D level with lipid, lipoprotein, and apolipoprotein level. J Community Hosp Intern Med Perspect, 11(6), 812-816. https://doi.org/10.1080/20009666.2021.1968571

Elseweidy, M. M., Ali, S. I., Shershir, N. I., Ali, A. E. A., & Hammad, S. K. (2022). Vitamin D3 intake as modulator for the early biomarkers of myocardial tissue injury in diabetic hyperlipidaemic rats. Arch Physiol Biochem, 128(3), 628-636. https://doi.org/10.1080/13813455.2020.1716015

Felicidade, I., Sartori, D., Coort, S. L. M., Semprebon, S. C., Niwa, A. M., D'Epiro, G. F. R., Biazi, B. I., Marques, L. A., Evelo, C. T., Mantovani, M. S., & Ribeiro, L. R. (2018). Role of 1α,25-Dihydroxyvitamin D3 in Adipogenesis of SGBS Cells: New Insights into Human Preadipocyte Proliferation. Cell Physiol Biochem, 48(1), 397-408. https://doi.org/10.1159/000491770

Hedayatnia, M., Asadi, Z., Zare-Feyzabadi, R., Yaghooti-Khorasani, M., Ghazizadeh, H., Ghaffarian-Zirak, R., Nosrati-Tirkani, A., Mohammadi-Bajgiran, M., Rohban, M., Sadabadi, F., Rahimi, H. R., Ghalandari, M., Ghaffari, M. S., Yousefi, A., Pouresmaeili, E., Besharatlou, M. R., Moohebati, M., Ferns, G. A., Esmaily, H., & Ghayour-Mobarhan, M. (2020). Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis, 19(1), 42. https://doi.org/10.1186/s12944-020-01204-y

Ivkovic, T., Tepavcevic, S., Romić, S., Stojiljkovic, M., Kostić, M., Stanišić, J., Koricanac, G., & Culafic, T. (2022). Cholecalciferol modulates fatty acid metabolism and calcium homeostasis in the heart. https://doi.org/10.21203/rs.3.rs-2226189/v1

Kim, M. R., & Jeong, S. J. (2019). Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites, 9(7). https://doi.org/10.3390/metabo9070125

Lee, H., Lee, H., & Lim, Y. (2020). Vitamin D(3) improves lipophagy-associated renal lipid metabolism and tissue damage in diabetic mice. Nutr Res, 80, 55-65. https://doi.org/10.1016/j.nutres.2020.06.007

Lim, H., Lee, H., & Lim, Y. (2021). Effect of vitamin D(3) supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp Biol Med (Maywood), 246(10), 1139-1147. https://doi.org/10.1177/1535370220987524

Marino, M., Venturi, S., Del Bo, C., Møller, P., Riso, P., & Porrini, M. (2022). Vitamin D Counteracts Lipid Accumulation, Augments Free Fatty Acid-Induced ABCA1 and CPT-1A Expression While Reducing CD36 and C/EBPβ Protein Levels in Monocyte-Derived Macrophages. Biomedicines, 10(4). https://doi.org/10.3390/biomedicines10040775

Morvaridzadeh, M., Agah, S., Alibakhshi, P., Heydari, H., Hoseini, A. S., Palmowski, A., Toupchian, O., Abdollahi, S., Rezamand, G., & Heshmati, J. (2021). Effects of Calcium and Vitamin D Co-supplementation on the Lipid Profile: A Systematic Review and Meta-analysis. Clin Ther, 43(9), 274-296. https://doi.org/10.1016/j.clinthera.2021.07.018

Mosca, S., Araújo, G., Costa, V., Correia, J., Bandeira, A., Martins, E., Mansilha, H., Tavares, M., & Coelho, M. P. (2022). Dyslipidemia Diagnosis and Treatment: Risk Stratification in Children and Adolescents. J Nutr Metab, 2022, 4782344. https://doi.org/10.1155/2022/4782344

Philouze, C., Martin, J. C., Riva, C., Marziou, A., Defoort, C., Couturier, C., Berton, T., Astier, J., Jover, B., Gayrard, N., Reboul, C., Gayrard, S., Landrier, J. F., & Obert, P. (2022). Vitamin D(3) Supplementation Alleviates Left Ventricular Dysfunction in a Mouse Model of Diet-Induced Type 2 Diabetes: Potential Involvement of Cardiac Lipotoxicity Modulation. Cardiovasc Drugs Ther, 36(2), 245-256. https://doi.org/10.1007/s10557-021-07143-9

Quach, H. P., Dzekic, T., Bukuroshi, P., & Pang, K. S. (2018). Potencies of vitamin D analogs, 1α-hydroxyvitamin D(3) , 1α-hydroxyvitamin D(2) and 25-hydroxyvitamin D(3) , in lowering cholesterol in hypercholesterolemic mice in vivo. Biopharm Drug Dispos, 39(4), 196-204. https://doi.org/10.1002/bdd.2126

Riek, A. E., Oh, J., & Bernal-Mizrachi, C. (2013). 1,25(OH)2 vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients. J Steroid Biochem Mol Biol, 136, 309-312. https://doi.org/10.1016/j.jsbmb.2012.12.019

Ruiz-Ramírez, A., López-Acosta, O., Barrios-Maya, M. A., & El-Hafidi, M. (2016). Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins. Oxid Med Cell Longev, 2016, 9340654. https://doi.org/10.1155/2016/9340654

Sosa Henríquez, M., & Gómez de Tejada Romero, M. J. (2020). Cholecalciferol or Calcifediol in the Management of Vitamin D Deficiency. Nutrients, 12(6). https://doi.org/10.3390/nu12061617

Surdu, A. M., Pînzariu, O., Ciobanu, D. M., Negru, A. G., Căinap, S. S., Lazea, C., Iacob, D., Săraci, G., Tirinescu, D., Borda, I. M., & Cismaru, G. (2021). Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines, 9(2). https://doi.org/10.3390/biomedicines9020172

Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., Godfrey, C. M., Macdonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö., & Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med, 169(7), 467-473. https://doi.org/10.7326/m18-0850

Tsuruki, F., Moriuchi, S., & Hosoya, N. (1986). Effect of dietary vitamin D3 and cadmium on the lipid composition of rat intestinal brush border membranes. J Nutr Sci Vitaminol (Tokyo), 32(2), 191-204. https://doi.org/10.3177/jnsv.32.191

Wahba, N. S., Ghareib, S. A., Abdel-Ghany, R. H., Abdel-Aal, M., & Alsemeh, A. E. (2021). Renoprotective effects of vitamin D3 supplementation in a rat model of metabolic syndrome. Eur J Nutr, 60(1), 299-316. https://doi.org/10.1007/s00394-020-02249-6

Wang, W., Zhang, L., Battiprolu, P. K., Fukushima, A., Nguyen, K., Milner, K., Gupta, A., Altamimi, T., Byrne, N., Mori, J., Alrob, O. A., Wagg, C., Fillmore, N., Wang, S. H., Liu, D. M., Fu, A., Lu, J. Y., Chaves, M., Motani, A., Ussher, J. R., Reagan, J. D., Dyck, J. R. B., & Lopaschuk, G. D. (2019). Malonyl CoA Decarboxylase Inhibition Improves Cardiac Function Post-Myocardial Infarction. JACC Basic Transl Sci, 4(3), 385-400. https://doi.org/10.1016/j.jacbts.2019.02.003

Yanai, H., & Yoshida, H. (2021). Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med, 3(1), 15-23. https://doi.org/10.35772/ghm.2020.01078

Zhang, W., Yi, J., Liu, D., Wang, Y., Jamilian, P., Gaman, M. A., Prabahar, K., & Fan, J. (2022). The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: a meta-analysis and systematic review of randomized controlled trials. Exp Gerontol, 161, 111709. https://doi.org/10.1016/j.exger.2022.111709.

Refbacks

  • There are currently no refbacks.